November 24, hour 31: The "ring" of modules
$\frac{1}{2} T 2 C 2 W:\left[M\right.$ FIg \cdot / R PIS $\Rightarrow M \cong \widetilde{\left.R^{k} \oplus \oplus R /\left\langle p_{i}^{s_{i}}\right\rangle\right]}$
\Rightarrow structure of FIg. Abelian groups, J.C.F.
Goal: The "ring" of modules.

Tensor Products. Given M, N

$$
\begin{aligned}
& M \times N \text { bilinear }
\end{aligned}
$$

Post Morton! I should have defined Morn by its universal property.
2. I should have given the $Z: F(x) \otimes F(y) \rightarrow F(x \times y)$ example. 1. Always infective! [not so $\left.\begin{array}{c}\text { ans y! } \\ \text { e nt }\end{array}\right]$
2. Isomorphisms if X or Y are finite.
3. Not surjective if $R=\not \subset, X_{1}, Y$ are infinite.
[not at all obvious ?

$$
\text { Pf. } \begin{array}{rlr}
{\left[r_{1}\right]_{a} \otimes\left[r_{2}\right]_{b} \longrightarrow\left[r_{1} \cdot r_{2}\right]_{4}} & {\left[9 \otimes[1]=\left[r_{1}+t\right) \otimes \otimes[1]=0\right.} \\
& {[r]_{9} \rightarrow[r]_{a} \otimes[1]_{b}} & {\left[r_{1} r_{2}\right) \otimes[1]=\left[r_{1}\right]\left[r_{2}\right]}
\end{array}
$$

theorem. $(R-n o d, \oplus, \otimes, O, R)$ is a "ring".
theorem. $(M, N) \longmapsto M \otimes N$ is a "bifunctor".
Reared. The universal property.

$$
\begin{gathered}
M \times N \xrightarrow[\text { Lilinoon }]{\sim} M \otimes N \\
\text { bilinear } \\
\searrow_{\rho} \ll \exists_{0}
\end{gathered}
$$

biliner $\geq_{\rho} \ll y_{0}$

