IT 2 C3W: $\left[M\right.$ Fig. $/ R$ RID $\left.\Rightarrow M \cong \mathbb{K}^{k} \oplus \oplus R /\left\langle p_{i}^{s i}\right\rangle\right]$
\Rightarrow structure of F.9. Abelian groups, J.C.F.
Riddle Along. Allowing $A C$ but not $C H$, con you find a chain $(A, B \in b \Rightarrow(A \subset B) \cup(B C A))$ of measure σ subsets of \mathbb{R} whose union issit of measure O ?
Today. The "ring" of modules.
Reminder. An R-modull: "A vector space over a ring".
Examples. I. V.S. over a field.
2. Abclian groups over \mathbb{Z}
3. Given T: $V \rightarrow V$, V over $F[x]$.
4. Given ideal $I \subset R, R / I$ over R.
$\left.\begin{array}{l}\text { 5. Column vectors } R^{n} \text { over } M_{\text {n xn }} \quad\left(\begin{array}{lll}\text { Left module } & R-n d \\ \text { right module molt }\end{array}\right) \\ \text { row vectors }\left(R^{n} T\right. \\ \text { over }\end{array}\right)$
Dee/Claim. R-mod \& mod-R are categories.
Def/claim. Submodules, $k o r \phi$, in $\phi, M / N$
Boring theorms. 1. $\phi: M \rightarrow N \Rightarrow M /$ kor $\phi \cong$ in ϕ
2. $A, B \subset M \Rightarrow A+B / B \cong A / A \cap B$
$3 A \subset B C M \Rightarrow M / A / B / A \cong M / B$
4. Also dull.

Direct sums. $M, N \Rightarrow M \oplus N$

$\operatorname{Hom}\left(\hat{\oplus}\left(\hat{\oplus} N_{j},{ }_{\oplus}^{m} M_{i}\right)=\left\{\left(\begin{array}{ll}a_{11} & a_{1 n} \\ a_{m 1} & a_{n n}\end{array}\right): a_{i j} \in \operatorname{Hom}\left(M_{i}, N_{j}\right)\right\}\right.$
Example: $\operatorname{dim}(V \oplus W)=\operatorname{dim} V+\operatorname{dim} W$.
Example: if $\operatorname{scd}(a, b)=1 \quad 1=s a+t b \quad[l . g$, if R is a PID $]$

