HW3 due, HWY on Webs soon.
Global goal: M Fig. module over a PIO $R \Rightarrow$ uniquely
IT 2C4W

$$
M \cong R^{k} \oplus \oplus R /\left(p_{i}^{s_{i}}\right) \quad \begin{aligned}
& p_{i} \text { prime } \\
& s_{i} \geqslant 1
\end{aligned}
$$

Cor l. A F. \exists Abelian $\Rightarrow A \simeq \mathbb{Z}^{k} \oplus \oplus \mathbb{Z} p_{i}^{\text {si }}$
Cor 2. $A \in M_{n \times n}(\mathbb{C})$ has a "Jordan form"
N_{0} Joy Agenda. Enc $\Rightarrow P I D \Rightarrow U F D$.
UFOs. Def. Every non-zero element can be factored into prises.
Tho. Uniqueness up to units of a permutation.
The. In a UFD, Prime \Leftrightarrow irreducible.
pf If an irred is decomposed, the decomposition must have length 1.
The. UFD \Leftrightarrow every $x \neq 0$ has a unique decomposition into irreducible pf need irrod \Rightarrow prime. If x is irreg \& x lab, then

Thm. In a UFD ged's always exist.
How show UFD? Nom \Rightarrow "POD" \Rightarrow UFO.
Def. Euclidean domain: has a "norm" $e: R-\{0\} \rightarrow I N$ sit.

1. $l(a b) \geqslant l(a)$ 2. $\forall a, b \quad \exists q, r$ sit. $a=q b+r$ \& $r=0$ or $e(r)<e(b)$
Example.
2. \mathbb{Z}

$$
\text { Example } \quad \frac{a=x^{3}-2 x^{2}-5 x+12}{b=x^{2}+1}
$$

2. $F[x]$

$$
\left.\cdots \begin{array}{l}
r=-6 x+14 \\
a(i)=\mid y-6 i
\end{array}\right\} \text { why? }
$$

theorem. A Euclidean domain is a "PID" (def).
(Thm: a PID is a UFD, leta)

Proposition. In a PID, eve prime ideal is maximal.
Pf. $I=\langle P\rangle$ prime, $I \subset J=\langle x\rangle \subset R \Rightarrow p=a x \Rightarrow$

$$
\left(a \in R^{*} \Rightarrow I=J\right) V\left(x \in R^{*} \Rightarrow J=R\right)
$$

therm. PID \Rightarrow UFD.
What Take $x=x$; unless $x, \in R^{2}, x_{1} \in M$, where M, is a maximal ideal containing $\left\langle x_{1}\right\rangle . M_{1}=\left\langle P_{1}\right\rangle$,
P, prime. So $x_{1}=\rho_{1} x_{2} j$ unless $x_{2} \in R^{*} x_{2} \in\left\langle x_{3}\right\rangle \subset M_{2}$ maximin $\mu_{2}=\left\langle p_{2}\right\rangle, x_{2}=p_{2} x_{3}, \ldots$ if process was infinite,

$$
\left\langle x_{1}\right\rangle \notin\left\langle x_{2}\right\rangle \notin\left\langle x_{3}\right\rangle \notin \ldots
$$

put a PID is "Noetherian",
$\left\langle x_{n}\right\rangle c\left\langle x_{n+1}\right\rangle$ as $x_{n}=p_{n} x_{n+1}$ if $x_{n+1} t\left\langle x_{n}\right\rangle, \quad x_{n+1}=a x_{n}$ so $x_{n}=\ln a x_{n} \& p^{\prime}$ s not rime.

So the process must terminate.
So $x=x_{1}=P_{1} x_{2}=P_{1} R_{2} x_{3}=\ldots=P_{1} P_{2} \ldots P_{n} h$
theorem. In a PID $\langle a, b\rangle=\langle\operatorname{gcd}(r, b)\rangle$. (so $\operatorname{gdd}(a, b)=s a+t b)$
The Euclidean Algorithm. In a Euc. Domain, a practical algorithm for finding $s(u, b) \& t(a, b)$ as above: WLOG, $l(a) \geqslant l(b)$
If $\langle a, b\rangle=\langle b\rangle$, take $(s, t)=(0,1)$. Otherwise $a=b a+r, \quad e(r)<e(b)$,
$\langle a, b\rangle=\langle b, r\rangle$ So if $g=s^{\prime} b+t^{\prime} r$, then

$$
g=s^{\prime} b+t^{\prime}(a-b q)={\underset{s}{2}}_{t^{\prime}}^{t^{\prime}} a+\underbrace{\left(s^{\prime}-t^{\prime} q\right)}_{t}, b
$$

theorem. R is a PID iff it has a "Dedekind-Hasse"
norm: $d: R-\{0\} \rightarrow N_{70} \quad[$ or add $d(0)=0]$
sit. if $a, b \neq 0$ either $a \in\langle b\rangle$ or $\exists 0 \neq x \in\langle a, b\rangle$

$$
w / d(x)<d(b) \text {. }
$$

pf. E is before. \Rightarrow Replace ovary prime by 2, get evan a "multiplicative" D-H norm.

If time: Modules, $\mathbb{Z}, V, T: V \rightarrow V$.

