\[S = \{ \text{bounded sets in } \mathbb{R} \} \quad I = \{ (a_n) : \text{finitely many } a_i \neq 0 \} \]

Claim. \(J \) is maximal ideal containing \(I \).

Definition. Say that \(A \in \mathcal{N} \) is “essential” if \(1_A \notin J \).

Claim. \(\{ A: A \text{ is essential} \} = \mu \) is a non-principal ultrafilter on \(\mathcal{N} \).

Proof. \(J \) is prime \(\Rightarrow \) \((A \in \mathcal{N} \Rightarrow A \in \mu) \)

\(N \in \mathcal{N} \) because \(1_N = 1_N \) is not in \(J \).

\[A \in \mu \Leftrightarrow 1_A \notin J \Leftrightarrow (1_N - 1_A) \notin J \Leftrightarrow 1_A \in J \Leftrightarrow A \in \mu \]

Monotonically because \(J \) is an ideal: \(A \in \mu, B \in \mu \Rightarrow B \in \mu \Rightarrow 1_B \in J \Rightarrow 1_A = 1_B \cdot 1_A \in J \Rightarrow A \in \mu \).

Principally from the definition of \(I \).

Definition. \(\mathcal{J} = \{ (a_n) : \forall \varepsilon > 0 \exists N: |a_n| < \varepsilon \} \) is essential

Claim. \(J \subset \mathcal{J} \)

Proof. Suppose \((a_n) \in J \), and \(\varepsilon > 0 \) is such that \(\{ N: |a_n| < \varepsilon \} \) is essential.

Let \(b_n = \sum_{n} a_n \varepsilon \) \(1 \leq n \leq \varepsilon \), otherwise.
Then \(a_n b_n = 1 \) on an essential set, so \(a_n, b_n \neq 0 \), so \(a_n \neq 0 \) so \(a_n \not\in J = \emptyset \).

Now by the maximality of \(J \), \(J = \emptyset \).

Claim. For every \((a_n) \in S\) there is some \(x \in \mathbb{F} \) s.t. \(a_n - x \bar{T} \not\in J \)

(follows from convergence on ultrafilters)

\[\Rightarrow \lim (a_n) = \lim (x \bar{T}) \]

Claim. The map \(\mathbb{R} \to S/\bar{J} \) via \(x \mapsto x \bar{T} \)

is injective and surjective.

Proof. Surjectivity was just shown. Injectivity is because any morphism of fields is injective, as field have no ideals to serve as kernels.

\[\Rightarrow \text{using } x \mapsto x \bar{T} \text{ to identify } S/\bar{J} \text{ with } \mathbb{R}, \text{ the resulting } \lim \text{ has all the required properties.} \]