* class photo at breaks HWI expuctij! HW2 ~
* Read Along: Munkees 17-19. More OHZ

Definition Limit pt: $x \in A^{\prime} \Leftrightarrow x \in \overline{A-\{x\}}$, iff 0 very abd of x contains a point of A other than x itself.
The $\bar{A}=A \cup A^{\prime}$
Hausdorff spaces. Definition.
propartios. In a T_{2} space x :

1. Points are closed.
2. $x \in A^{\prime}$ ff cory nad contains infinitely many points of x.
3. A sequence converges to at most one limit.
4. Products of $T_{\alpha} \&$ subspaces of T_{2} ara T_{2}.

Continuous Functions. TFAE for $F: X \rightarrow Y$:

1. F is cont.
2. $F(\bar{A}) \subset \overline{F(A)}$
3. For avery closed $B \subset, Y, f^{-1}(B)$ is closed in X.
4. For vary $x \in X \&$ nod V of $f(x), \exists$ nod U of x st. $f(U) c V$.
PF $1 \Rightarrow 2 \mathrm{~V}$ done line
$2 \Rightarrow 3$ Let $A=F^{-1}(B) . \quad F(\bar{A}) \subset \overline{f\left(F^{-1}(B)\right)} \subset \bar{B} \subset B$
So $\bar{A} \subset A$ so A is closed.
$3 \Leftrightarrow 1$
$1 \Leftrightarrow 4$

The Product Topology. On $\prod_{\alpha \in I} X_{\alpha}=\left\{f: I \rightarrow U X_{F}:\left(F_{F}\right) \in x_{\mathcal{X}}\right\}$

1. Definition dy properties
2. Basis.

The axiom of choice:
"This is not empty".
The box topology. [ar finite products, this is $\left.\begin{array}{c}\text { the same }\end{array}\right]$
Example $\mathbb{R} \longmapsto \mathbb{R}^{N}$ by $t \mapsto(t, t \ldots)$ is continuous in cyl but not in box [so box is strictly Finer than cyl]
In both box \& cyl:

1. The topology on $\Pi A_{\alpha} \subset \Pi x_{2}$ as subspace is the same as ... as a product of subspaces.
2. If X_{α} is $T_{2} \forall<$, then πx_{α} is T_{2}.
3. $\overline{\prod A_{\alpha}}=\prod \overline{A_{\alpha}}$

Metrics \& the metric topology.

