October 4, hour 10: Continuous Functions, Boxes and Cylinders October-01-10
3:33 PM

Read Along: Munkris 18, 19.
Continual Functions. TFAE for $F: X \rightarrow Y$:

1. A is cont.
2. $f(\bar{A}) \subset \overline{f(A)}$
3. For over chasid $B \subset Y, F^{-1}(B)$ is cess in X.
4. For way $x \in x k$ nt d V of $f(x)$, Fa bl on
U of x st. $f(u) \subset V$. board

$2 \Rightarrow 3$ Lit $A=F^{-1}(B) . \quad f(A) \subset \overline{f\left(F^{-1}(B)\right)} \subset \bar{B} \subset B$
So $\bar{A} \subset A$ so A is closed.
The Product Topology On $\left.\prod_{\alpha \in I} X_{\alpha}=\left\{F: I \rightarrow U X: F_{T}\right) \in x_{j}\right\}$
5. Definition by properties hare $\{2$. Basis.

The axiom of choice:
"this is not empty".

The box topology. $\left[\begin{array}{c}\text { arinite products, this is } \\ \text { the same }\end{array}\right]$
the same Done line
Example $\mathbb{R} \longmapsto \mathbb{R}^{N}$ by $t \mapsto(t, t \ldots)$ is continuous in cyl but not in box [So box is strictly Finer than cyl]
In both box \& Cyl:

1. The topology on $\Pi A_{<} \subset \Pi x_{2}$ as subspace is the same as... as a product of subspaces.
2. If X_{α} is $T_{2} \forall<$, then πx_{α} is T_{2}.
3. $\overline{\prod A_{\alpha}}=\prod \overline{A_{\alpha}}$

Metrics \& the metric topology.

