

Riddle Along. $6(x \sim x)=$?

Read Along. $38(\sim), 35$.
challenge. Philosophically specking, there should be a route from "metric" to "embers in It" not going through Urysohn. Find It!
proposition. X is $T_{3.5}$ iff $\{[F \neq 0]: F: X \rightarrow \mathbb{R}$ cont. $\}$ is a basis for the topology of X.
Claim. 1. If X is $T_{3.5} \& Y \subset X$, then Y is T T3.5
2. If X_{α} is $T_{3.5} \forall \alpha$, then so is ΠX_{α}

Given X let $C x=C(X, I)=\left\{\begin{array}{l}\text { cont. } \\ f: x \rightarrow \pm\}\end{array}\right\}$ and let

$$
\phi: X \rightarrow I^{C_{X}} \text { be } \prod_{f} f ; \phi_{f}=f ; ; \phi(x)_{f}=f(x) \text {. }
$$

Theorem. ϕ is an embedding of X is T_{35}.
(def: embedding: homeomorphism into its ingael.
proof. \Rightarrow A subspace of $T_{3.5}$ is $T_{3.5}$.
$\leqslant \phi$ is clear 1-1. If VCX is open, we need to
shew that $\phi(U)$ is open in $F(X)$. Indeed,

$$
\phi([F \neq 0])=\phi(X) \cap\left[\pi_{F} \neq 0\right]
$$

Tietze's Theorem. If X is $T_{y}, A \subset X$ closed, and $f: A \rightarrow \mathbb{R}$ is cont., then there is a cont. extension \mathbb{F}
of f to all of X. (So $\left.\left.\tilde{F}\right|_{A}=f\right)$
Remark. Tietze \Rightarrow Urysohn.
PF. of Tirtze. Assume First that F is bud.

Lama Suppose $\widetilde{F_{0}}: X \rightarrow \mathbb{R}$ is such
That $\left|F-\widetilde{F_{0}}\right|<E$ on A; then
$\exists \widetilde{F}_{1}: x \rightarrow A$ sit. $\left|\widetilde{F_{0}}-F_{1}\right| \leqslant \epsilon$ ever \bar{l} where
$k\left|f-\tilde{F}_{1}\right| \leqslant \frac{2 \epsilon}{3}$ on A.
So construct $\widetilde{F}_{0}=0, \widetilde{F}_{1}, \widetilde{F_{2}} \ldots$ sit.

$$
\begin{aligned}
& \left|F-\tilde{F_{n}}\right|<\left(\frac{2}{3}\right)^{n} M \text { on } A \\
& \left|\tilde{F_{n}}-\tilde{F_{n+1}}\right|<\left(\frac{2}{3}\right)^{n-1} \text { on } X
\end{aligned}
$$

let $\tilde{F}(x)=\lim _{n \rightarrow} \tilde{F}_{n}(x)$ (limit exists as $\tilde{F}_{1}(x)$ is cauchy)
Lemma A uniformly convergent sequence of cont. functions converges to a cont. limit.
proof....
Now do the unbounded cast.....

