Class photo, HWI on weblog
Read Along: Slick notes 1.6, Hunger Ford's book 7.10.
The symmetric Group.
Def $(-1)^{\sigma}=\operatorname{sign}(\sigma)=\prod_{i<j} \operatorname{sign}(\sigma(j)-\sigma(i))$
claim $(-1)^{\sigma \tau}=(-1)^{\sigma}(-1)^{\tau}$
pf

$$
\begin{aligned}
& (-1)^{\sigma \tau}=\prod_{i<j} \operatorname{sign}\left(\sigma \tau(j)-\sigma \frac{\sigma}{}(i)\right)= \\
& \prod_{i<j} \operatorname{sign}\left(\tau(j)-\tau(i) \prod_{i<j} \operatorname{sign}(\sigma \tau(j)-\sigma \sigma(i))=\right. \\
& =\operatorname{sign}(\tau) \cdot \operatorname{sign}(\sigma)
\end{aligned}
$$

"the alternating group".
So sign: $S_{n} \rightarrow\{ \pm 1\}=\mathbb{Z} / 2$. Let $A_{n}=$ ked sign.
$\left[\begin{array}{c}\text { An is the sot of perms that can be written ag } \\ \text { an oven product of transpositions }\end{array}\right]$
Theorem. An is simple for $n \neq 4$.
Cycle Decomposition. (12)(345) $=[21453]=2 / 453$
Claim If $\sigma=\left(a_{1} \ldots a_{k}\right)$ and $\tau=\left[\tau_{1} \tau_{2} \ldots \tau_{7}\right]$,
then

$$
\sigma^{\tau}=\tau^{-1} \sigma \tau=\left(\tau^{-1}\left(a_{1}\right), \tau^{-1} a_{2}, \ldots\right)
$$

Corollary σ is conjugate to σ ' iff they have The same cycle lengths
Corollary \#(Conjugacy classes of $\left.S_{n}\right)=P(\eta)$ done line Lemma 1. Every dement of A_{1} is a product of 3 -cycle. PE $(12)(23)=(123), \quad(123)(234)=(12)(34) \cdots$
Lemma 2. If $N \triangleleft A$ contains a $3-c_{y} d l$, then $N=A_{n}$ PE WLOG, (123) $\in N$. Claim For $\sigma \in S_{n},(123)^{\sigma} \in N\binom{\sigma \in A_{1}, V}{r=(r) \sigma v}$

So N contains all 3-cycles...
Now take $N \triangleleft A_{n} w / N \neq\{1\}$ [Always take the commutation]
Case 1. W contains an element w/ cycle of length $\geqslant 4$

$$
\sigma=(123456) \sigma^{\prime} \in N \quad \sigma^{-1}(123) \sigma(123)^{-1}=(136)
$$

Case 2. N contains an element $\alpha=(123)(456) \sigma$)

$$
\text { consider } \sigma^{-1}(124) \sigma(124)^{-1}
$$

Case 3. N contains $\sigma=(123)$ (product of pis is)
Then $\sigma^{2}=(132) \ldots$
Casey. Every element of N is a product of disjoint $2-$ cycles.

$$
\begin{gathered}
\sigma=(12)(34) \sigma^{1} \Rightarrow \sigma^{-1}(123) \sigma(123)^{-1}=(13)(24)=\tau \in N \\
\Rightarrow \tau^{-1}(125) \tau(125)^{-1}=(13452) \in N
\end{gathered}
$$

