

a(A)B)/a(A)b)=(A)B)(A)b)(A)b)(A)b)=
$= \frac{A \cdot B}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} \cdot \frac{(A \cdot B)}{(A \cdot B)} = \frac{(A \cdot B)}{(A \cdot B)} $
as (AnB) na(Anb) = (anb) bna(Anb) Bna(Anb) = (anb) bna(Anb)
Given <b, <beb="" <ea,="" bead,=""> <be(ab) nb<="" th=""></be(ab)></b,>
Exercise. Use the same principle to show that any two Finite
bases of a vector space have the same cardinality.
Example. Z/n is simple iff n is prime.
Added oct 7,2010. There's a much simpler proof of done line
Jordan-Hölder in E-tingor's Groups around us":
\(\left\) \(\frac{\text{http://www-math.mit.edu/~etingof/groups.pdf}}{} \)

Simple groups are important because any finite group can be decomposed into simple ones in a unique way, similarly to how a molecule can be decomposed into atoms. More precisely, we have the following theorem, called the Jordan-Hölder theorem.

Theorem 2.71. Let G be a finite group. Then there exists a sequence of subgroups $G = G_0 \supset G_1 \supset ... \supset G_n = \{e\}$ such that G_{i+1} is normal in G_i , and the groups $H_i := G_{i-1}/G_i$ are simple. Moreover, the sequence of groups $H_1, ..., H_n$, up to permutation, depends only on G and not on G_i .

Definition 2.72. The sequence $H_1, ..., H_n$ is called the composition series of G.

This theorem implies that if we understand finite simple groups, then to some extent we will understand all the finite groups. (With the understanding that this is not the full picture, since there are many complicated ways in which simple groups H_i can be "sown together" into G. This is similar to the distinction in chemistry between composition formula and structure formula of a substance).

Proof. To prove the existence of G_i , we can choose G_i to be a maximal normal subgroup in G_{i-1} (not equal G_{i-1} itself). Now we prove uniqueness of the composition series by induction in |G|. Assume that there are two collections of subgroups, G_i and G'_i . If $G_1 = G'_1$, the statement follows from the induction assumption. Otherwise, we have homomorphisms $f: G \to H_1, f': G \to H'_1$, which combine into a surjective homomorphism $f'': G \to H_1 \times H'_1$. Let K be the kernel of this homomorphism. Let $L_1, ..., L_r$ be the composition series of K (well defined by the induction assumption). Then G_1 has composition series

$$(H_2,...,H_n) = (H'_1,K_1,...,K_r),$$

and G'_1 has composition series

$$(H'_2,...,H'_m) = (H_1,K_1,...,K_r).$$

Thus, adding H_1 to the first series and H'_1 to the second. we get

$$(H_1, H_2, ..., H_n) = (H'_1, H'_2, ..., H'_m),$$

as desired.

Exercise 2.73. (i) Show that if H is a normal subgroup in G then the composition series of G is obtained by combining the composition series of H and G/H.

(ii) Show that if G is a group of order p^n , where p is a prime, then its composition series consists of n copies of \mathbb{Z}_p .

Exercise 2.74. Find the composition series of S_n .

Solution: For n = 3, \mathbb{Z}_2 , \mathbb{Z}_3 . For n = 4, three copies of \mathbb{Z}_2 and \mathbb{Z}_3 . For $n \geq 5$, \mathbb{Z}_2 and A_n .

Definition 2.75. A finite group G is solvable if all its composition factors are cyclic.

Added April 4, 2011: Is this the same as the "Diamond Lemma" proof alluded to at http://sbseminar.wordpress.com/2009/11/20/the-diamond-lemma/?

The Symmetric Group.

Def $(-1)^{-1} = sign(\sigma) = TT sign(\sigma(i) - \sigma(i))$ claim $(-1)^{-1} = (-1)^{-1}(-1)^{-1}$ $P^{f}(-1)^{-1} = TT sign(\sigma T(i) - \sigma T(i)) = TT sign(\sigma T(i) - \sigma T(i))$

 $(-1)^{\sigma \tau} = \prod_{i \leq i} sign(\sigma \tau(i) - \sigma \tau(i)) =$ T sign(T(i)-T(i)) (5) (5) (5) (6) (1) = 1 (1) = $sign(\tau) \cdot sign(\sigma)$ "The alternating group" So sign: Sn - Still = 2/2. Let An = ker sign. [An is the set of purms that can be written as]

Languar product of transpositions Theorem. An is simple for n=4. Cycle Decomposition, (12)(345) = [21453] = 2/453 Claim If $\sigma = (a_1...a_k)$ and $\tau = [\tau_1 \tau_2...\tau_n]$, then $T = T - T = (T(a), T(a_{2}, \dots))$ Corollary of is conjugate to of iff they have The same cycle lengths Corollary # (Conjugacy classes of Sn) = P(n) Lemma 1. Every element of An is a product of 3-cycle. $PF = (12)(23) = (123), (123)(234) = (12)(34) - \cdots$ Lemma 2. IF NOAn contains a 3-Cyde, then N=An PE WLOG, (123) EN. Claim For JES, (123) EN (JEn) So N contains all 3-(yclu... Now take NOAn W/ N= 41/6

Case 1. N contains an element W/ Cycli of length >4 $\sigma = (123456) \sigma / \epsilon N$ $\sigma / (123) \sigma (123) / = (136)$ (asl 2. N contains an element = (123)(456) -1 Consider 0-1(124) 0- (124) 4 Case3. N contains = (123) (product of pas) Then -2 = (132) ---(nse Y. Every element OF N is a product of disjoint 2-cycle. T = (12)(34) = $T^{-1}(123)$ $T^{-1}(13)^{-1} = (13)(24) = TEN$ > T (125) T (125) T = (13452) EN