Read Along: Slick's notes 1.1, 1.2.1, 1.4. Lang's book I1-3.
Quick reviow of quotients \& the first isomorphism them, a word about cosets and Lagrange's theorem, then:
Second Isomorphism Theorem. $H, K<G, H<N_{G}(k)$
$\Rightarrow H \cap K \nabla H, K \nabla H K$ and $H K / K=H / H n K$.

In a diagram:

To doll De fine "Normalizer"
2. Honk is a subgroup.
3. Hn K 寸 H
Y. HK is a subgroup
5. $k \nabla H k$.
6. The isomaphism.

Now the isomorphism:
$\phi: h(H \wedge E) \longmapsto h E \quad$ cindy will defined.
$\psi: h k K \longmapsto h(H \cap K)$
$h_{1} k_{1} K=h_{2} k_{2} K$ iff $h_{1} \mathbb{K}=h_{2} \mathbb{K}$ iff $h_{1} h_{2}^{-1} \in K \cap H$.
Third Isomorphism Theorem. $N \sigma G, H \nabla G, N K H$
$\Rightarrow H / N \nabla G / N$ and $(G / N)(H / N) \simeq G / H$.
Proof. $\phi: G / N / H / N \rightarrow G / H$ by $\left[[9]_{N}\right]_{\mathrm{H} / \mathrm{N}} \longrightarrow[9]_{H}$

$$
\psi: G / H \rightarrow G / N / H / N \text { bJ }[g]_{H} \longrightarrow\left[[g]_{N}\right]_{H / N}
$$

For th Isomorphism Theorem. If $N \nabla G$ there's a bijection boturen subgroups of G / N and subgroups of G that contain N. This bijection preserves inclusions, indices, inter sections, and normality of inclusions.

The Butterfly. $1<a \triangleright A<G, 1<b \triangleleft B<G$
$\Rightarrow a(A \cap b)<1$ a $(A \cap B)$. (Following Lan

$$
\begin{aligned}
& \Rightarrow a(A \cap b) \triangleleft a(A \cap B), \quad \quad \text { (Following Lang) } \\
&(a \cap B) b \triangleleft(A \cap B) b, \\
& \text { and } \quad a(A \cap B) / a(A \cap b) \cong(A \cap B) b /(a \cap B) b
\end{aligned}
$$

the A scale"

$\left.\begin{array}{c}\text { likewise For virtues } \\ \text { of insects }\end{array}\right)$
(picture from Lang book)

Jordan-Hölder Now Follows....
proof of Butterfly. Normality is obvious.

$$
\begin{aligned}
& (A \cap B) \cdot a(A \cap b)=a(A \cap b)(A \cap B)=a(A \cap B) \text {, so } \\
& a(A \cap B) / a(A \cap b)=(A \cap B) \cdot\left(A A^{\prime} b\right)^{k} \cdot\left(A A^{K} b\right) \cong
\end{aligned}
$$

as $(A \cap B) \cap a(A \cap b)=(a \cap B) b \cap a(A \cap b)$

$$
{ }^{\prime} B^{\prime} \cap a(A \cap b)^{\lambda^{L s y}} C_{2}
$$

Given $\alpha \beta,<\in a, \beta \in A^{n} b, \alpha \beta \in B \Rightarrow\left\langle\in B \Rightarrow \alpha \beta \in(a \sim B)^{n} b\right.$
Exercise. Use the same principle to show that any two finite bases of a vector space have the same cardindity.

