Read Along. Slick 1.8,1.10, 1.11.
Chunder Davis' Lecture.
Riddle Along. $\begin{gathered}\forall \alpha \in \mathbb{R} \quad \exists a_{i} \in Q \\ \text { sit. } a_{i} \rightarrow \alpha\end{gathered} \mathbb{Q}[0, r]$ whet do $\begin{aligned} & \text { hes sols }\end{aligned}$
Aside. Go over MaxpermOrder.
Big Example. $B_{n}=\pi_{1}\left(\left(\mathbb{C}^{2}-\{d \operatorname{lingg}\}\right) / S_{n}\right)=11 / 1$
${ }^{n}$ hat $[$ Groups of $\operatorname{order} 21 . \mathbb{Z} / 21, \mathbb{Z} / 7 \rtimes \mathbb{Z} / 3=\langle x\rangle \rtimes\langle y\rangle$
Ant $(\pi / 7)=\mathbb{Z} / 6=\left\langle\phi_{3}\right\rangle ; \phi_{3}(x)=x^{3} ; \quad x^{y}=x$ or $\frac{x^{2}}{\widehat{\uparrow} \text { or or } x^{4}}$
(iso: if $x^{y}=x^{2}$ \& $y=y^{2}$ hen $x^{5}=x^{4}$)
Groups of order 12 . If $16 / 1 / 2, P_{4}=\mathbb{Z} / 4$ or $(\mathbb{Z} / 2)^{2}, P_{3}=\mathbb{Z} / 3$, and at least one of Rose is normal, for thai's not enough rom for $4 P_{3} \& 3 P_{4}$'s. So G is a seni-direct product. $\mathbb{Z} / 12, \mathbb{Z} / 2 \times \mathbb{Z} / 6, A_{4}, \mathrm{D}_{2}, \mathbb{Z} / 3 \times \mathbb{Z} / 4$
The most fun case is $\mathbb{Z} / 3 \rightarrow(\mathbb{T} / 2)^{2}$, giving A_{4}. Solvable Groups. Def G is solvable if all quotients in its Jortan-Hölder series are Ablian.
Thmi. If $N \Delta G, G$ is solvable iff $N \& G / N$ are.
2. If $H<G$ and G is solvable, so is H.
$A \nabla B \quad H \cap A \nabla H \cap B ? \vee \frac{H \cap B}{H \cap A} \rightarrow B / A$ by $[b]_{H \cap A} \rightarrow[b]_{A}$ is injoctive.

