October 14, hour 15: The Sylow Theorems, Semi-Direct Products
October-12-10 4:32 PM Rend Along: D&F 4.5, Switch 1.8.
A&B Play as Follows: 1. A writes 1 If on the Faces of
2. B chooses only then A chooses another. 3. They play war" a 1000 times, on money. Whom would you rather be?
3. They play war a 1000 times, on money.
Whom would you rather bel
Def & Finite, a p-group, a Sylow-p group, Syly(G)
Theorem. 1. Sylow p-groups always exist; Syly(G) #\$.
2. Every p-group is contained in a Sylav-P group.
3. All Sylow-P subgroups of G are conjugate, and
$N_{p}(G) := Syl_{p}(G) = mod P. N_{p}(G) G $
Tools. 1. Every G-set is a union of erbits, each one has
Order dividing the order of 161.
2. Cauchy's theorem. In an Abelian group of order
divisible by P, There's an element of order p.
Prof: Pick $x \in G$. If $P[x]$, done. Else $P[\mathcal{G}(x_7)]$ so $\exists y \in G$ with $ y = P(x_7)$ with $0 \in C \in P$. Get $0 = y^{ x } = x^{ x } \Rightarrow y^{ x } \in (x_7) \Rightarrow r = 0$, so $P[y]$.
3 If a p-element x, or a p-group H, normalites P+Sylp (G)
then xEl, or HCl.
Step 1. $Sylp(6) \neq \emptyset$
Stop2. If LESylpla), consigntos or = 1 mod p.
Step3. If PESylp(a) & H=6 is a p-gray, then H
is contained in a conjugate of I (as the rest follows).

Suni-Direct Products. If N <g, conpare="" h<g,="" ha<="" hxn="" th="" with=""></g,>
There's always M: H×N->HN by (h,n) H>hn.
IF NoH= Leg, invoctive, might not be surjective
In general, nothing to say. If NoH= fey, invective, might not be a gray. IF NoH= fey & NJG & HAG, Acr [N, H] = fey & line.
1+N=> + ×N.
The interesting case is when NOH = Ley, NOG, H not.
Get Hand (N) by h Hand (NH) nh = h-1nh)
or $\emptyset \downarrow (n) = h^{-1}nh$
hin, hane = hihahan, hane = hihadha (n,) na
Dufinition. Given abstract N, H & Ø: H > Aut(N),
The Simi-direct product HXN
Prop. 1. In the above Case, M: HXN-9HN is
an isomorphism.
2. No (HKN) and HKN/N =H.