IT 2 C $2 W:\left[M\right.$ Fig \cdot / R SID $\left.\Rightarrow M \cong \mathbb{K}^{k} \oplus \oplus R /\left\langle p_{i}^{s i}\right\rangle\right]$
\Rightarrow structure of FIg. Abelian groups, J.C.F.
Reminder. $M \otimes N, \operatorname{dim} V \otimes W=(\operatorname{dim} V \mid / \operatorname{dim} V), \frac{R}{\langle n \lambda} \otimes \frac{R}{\langle b\rangle}=\frac{R}{O \theta d(\pi, b)\rangle}$
HW. Is $\mathbb{Q}[x, y] / x^{2}+y^{2}=1$ a UFD?
The universe property of tensor products, then... theorem. $(R-n o d, \otimes, \otimes, 0, R)$ is a "ring".
Example. $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^{n} \cong \mathbb{Q}$ "Extension of scalars".
In geneal, given $\phi: R \rightarrow S$ a ring morphosis, S is an R module k sit $M_{S}:=S \otimes_{R} M$. Then $\mathbb{R}_{s}^{n}=S^{n}$. Theorch. $(M, N) \longmapsto M \otimes N$ is a "bifunctor"\} ~ s t i p e . ~

Prop. For any domain R there is a unique field $Q(R)$
sit. $\begin{array}{r}R \underset{F}{\stackrel{(-1)}{\longrightarrow} Q(R)} \\ \underset{F}{i \exists 8}\end{array}$ "he fill of functions? proof liter.
Claim If M is torsion then $M_{Q(R)}=0$. $\}_{\text {nt property }}$ str.
Prop If $M \cong R^{k} \oplus \oplus R /\left\langle p_{i}\right.$; $\left.i\right\rangle$, then

1. $\operatorname{dim}_{Q(K)} M_{Q(K)}=K$
2. $\operatorname{dim}_{p R\langle p\rangle} M_{R\langle\langle p\rangle}=K+\left|\left\{i: p_{i} \sim p\right\}\right|$ done the
3. $\operatorname{dim}_{k<(p)} \quad i m\left(m \mapsto p^{s} m\right)=k+\mid\left\{i: p_{i} \sim p \& s \subset s_{i} q\right\}$

Localization \& fields of fractions.

