Round Indeed your mark is low. It counts for just 25% of the total so in theory, you can still end this course with a pretty high grade. It is not for me to tell if this theory can become practice - I only know that your mark on this test was low, and I cannot speculate what the reason was Bad luck? Insufficient preparation? Insufficient background? Bad day? Something else? Only you can know (and perhaps even you cant) if this was a one-time issue and you can expect things to get better, or if it is a good predictor for your final grade.
HW. twa will be return by midnight.

You definitely have to consider it as a serious warning sign, and you do have to figure out what went wrong and how it can be fixed.

Tormtest. Discussion at end.
Goal. 1. Rings, ideals, isomorphisms.
2. Prime \& maximal It eras, domains and fields.

Definition 2.1.1. A ring consists of a set R together with binary operations + and \cdot satisfying:

$$
\begin{aligned}
& \text { 1. }(R,+) \text { forms an abelian group, } \\
& \text { 2. }(a \cdot b) \cdot c=a \cdot(b \cdot c) \forall a, b, c \in R \text {, } \\
& \text { 3. } \exists 1 \neq 0 \in R \text { such that } a \cdot 1=1 \cdot a=a \forall a \in R \text {, and } \\
& \text { 4. } a \cdot(b+c)=a \cdot b+a \cdot c \text { and }(a+b) \cdot c=a \cdot c+b \cdot c \forall a, b, c \in R \text {. }
\end{aligned}
$$

Also define.
comnutatico ring.

Examples. $\mathbb{Z}, R[x], M_{n \times n}(R)$
in, subbing, kier, ideal.
Q. Is ivory id al a quotient?

Ans. Define R / I.
The Isomorphisin theorems. 1. $f: R \rightarrow S \Rightarrow R /$ cert $f)=\operatorname{in} f$.
2. $\frac{A+I}{I} \cong A / A \subset I \quad A C R$ sub sing, $I \subset R$ idol.
3. IcJ cR ideals $\Rightarrow \frac{R / I}{J I I} \simeq R / J$
4. Given an ideal I of K, there's a bijection between
ideals $I \subset J \subset R$ \& ideals of R / I.
Better Rings. 1. The ultimate:
Field [commutative, Flog a group]
("division ring", if not commutative

$$
\begin{aligned}
& \text { division ring", if not commutative } \\
& \text { Example: } \left.H=\{a+b i+c j+d k\} / \begin{array}{l}
i^{2}=j^{2}-k^{2}=-1 \\
i j=k
\end{array}\right) \\
& \text { useful for } 3 D \text { rotations, tc... }
\end{aligned}
$$ freshman algebra

carries the rough
2. (Integral) domains: commutative, has no o-divisors. How make? For ideals which, B/I is a field or a domain? from now on, R is commutative.
Maximal Ideals. 1. Definition.
2. Fishy existence
3. Ic is maximal $\Leftrightarrow R / I$ is a field.

Fishy proof: Use the y th isomorphism theorem.
Honest proof: $\Rightarrow: x \notin I \Rightarrow R x+I=R \Rightarrow \exists y \in R \quad y x+I=1+I$

$$
\Leftarrow J \nexists I, x \in J \backslash I \Rightarrow[x]_{I} \neq 0 \Rightarrow \exists J x y-1 \in I \Rightarrow \mid \in J
$$

Prime Ideals. 1. Definition $P \subset R$ is prime if $a b \in P$

$$
\Rightarrow a \in P \text { or } b \in P
$$

2. Theorem. R / P is a domain ifs P is prime.

$$
\begin{aligned}
& \text { Proof. } \Rightarrow a b \in P \Rightarrow[a b]=0 \Rightarrow[a][b]=0 \Rightarrow \begin{array}{l}
{[a]=0 \Rightarrow a+p} \\
{[a]=0 \Rightarrow b \in P}
\end{array} \\
& \leftarrow[a][b]=0 \Rightarrow[a b]=0 \Rightarrow a b \in P \Rightarrow \Rightarrow \begin{array}{c}
a \in \mathcal{P} \\
b \in P \\
b \in P
\end{array} \Rightarrow[b]=0
\end{aligned}
$$

Theoren. A maximal ideal is prime.

