IT 2C3W: [MF: \cdot. R P ID $\left.\Rightarrow M \cong K^{k} \oplus \oplus R /\left\langle p_{i}^{s_{i}}\right\rangle\right]$
\Rightarrow structure of FIg. Abelian groups, J.C.F.
Today. The "ring" of modules.
Reminder. An R-module: "A vector space orr a ring".
Examples. 1. V.S. over a field.
2. Abelian groups over \mathbb{Z}.
3. Given $T: V \rightarrow V, V$ over $F[x]$.
4. Given ideal $I \subset R, R / \pm$ over K.
5. Column vectors R^{n} over $M_{n \times n} \quad\binom{$ Lest module R-nat }{ right module mod $-R}$

Dce/Claim. R-mod \& mod-R are categories.
Def/claim. Suboodules, k or ϕ, in $\phi, M / N$
Boring theorems. 1. $\phi: M \rightarrow N \Rightarrow M / \operatorname{ker} \phi \simeq \operatorname{im} \phi$
2. $A, B \subset M \Rightarrow A+B / B=A / A \cap B$
$3 A \subset B C M \Rightarrow M / A / B / A=M / B$
4. Also dull.

Example: $\operatorname{dim}(v \otimes W)=\operatorname{dim} V+\operatorname{dim} W$.
Example: if $\operatorname{gcd}(a, b)=1 \quad 1=s a+b b \quad[l . g$., if R is a P 㓛 $]$

$\$ 4 / \otimes \not / 1 \otimes \not / 13 \cong 2 / 77 \otimes 4 / 13 \cong 2 / 1,001$ "the chines remaniter

Tensor Products. Givon M,N

$$
\begin{aligned}
& \text { M×N }{ }^{\text {N }} \text { bilincar }
\end{aligned}
$$

Example $\cdot \operatorname{dim} V \otimes W=(\operatorname{din} V) \cdot(\operatorname{din} W)$

$$
\begin{aligned}
& \text { Pf. }\left[r_{1}\right]_{a}\left[r_{2}\right]_{b} \rightarrow\left[r_{1} \cdot r_{2}\right]_{4} \quad[9] \otimes[1]=\left[r_{1}+t b \otimes[1]=0\right. \\
& {[r]_{9} \rightarrow[r]_{a} \otimes[1]_{b} \quad\left[r_{1} r_{2}\right][1]=\left[r_{1}\right]\left(r_{2}\right]}
\end{aligned}
$$

throrem. $\left(R-n_{0} d, \otimes, \otimes\right)$ is a "ring". \} stated
theorch. $(M, N) \longrightarrow M \otimes N$ is a "bifunctor".

