Local
Goal. Prime it eds \&
Euclican \Rightarrow PTO \Rightarrow UFO
Read Aton : slick

$$
2.2,2.7,(2.8,2.9)
$$

Global goal "vs." "Fwd." "R,F[x]"
IT2C4W: M FIg. over a PIO $K \Rightarrow$ uniquely

$$
M \cong R^{k} \oplus \oplus R /\left(p_{i}^{s_{i}}\right) \quad \begin{aligned}
& p_{i} \text { prime } \\
& s_{i} \geqslant 1
\end{aligned}
$$

Cor I. A f.J Abelian \Rightarrow

$$
A \simeq \mathbb{Z}^{k} \oplus \oplus \mathbb{Z} / p_{i}^{s_{i}}
$$

Cor 2. $A \in M_{n \times n}(\mathbb{C})$ has a "Jordan form"
Prime Ideals. 1. Definition $P \subset R$ is prime if $a b \in P$

$$
\Rightarrow a \in P \text { or } b \in P
$$

2. Theorem. R / P is a domain iff P is prime.

$$
\begin{aligned}
\text { Proof } \Rightarrow a b \in P \Rightarrow[a b]=0 \Rightarrow[a][b]=0 \Rightarrow\left[\begin{array}{c}
{[a]=0 \Rightarrow a+p} \\
{[b]=0 \Rightarrow b \in p .} \\
\leftarrow
\end{array}\right. \\
\leftarrow[a][b]=0 \Rightarrow[a b]=0 \Rightarrow a b \in p \Rightarrow a \in \mathbb{P} \Rightarrow[a]=0 \\
b \in p \Rightarrow[b]=0
\end{aligned}
$$

Theoren. A maximal ideal is prime.
Primes.1. $a / b \quad(a / b \wedge b / a \Rightarrow a=u b)$
2. $\operatorname{gcd}(a, b)=9 \quad j \operatorname{gcd}=q \& \operatorname{gcd}=q^{\prime} \Rightarrow q^{\prime}=u q$
3. Primes: $p \neq 0$ non-unit $p \mid a b \Rightarrow p / a$ or p / b P is prime tiff $\langle\rho\rangle$ is print ideal.
4. Irreducible $x=a b \Rightarrow a \in R^{*} \vee b \in R^{*}$

Claim prime \Rightarrow irreducible
counter example: in $\mathbb{Z}[\sqrt{-5}]$,

$$
\begin{aligned}
& p=a b \Rightarrow p|a \Rightarrow a=P C \quad| \begin{array}{l}
2 \text { is not prime, as } \\
b \mid(1-\sqrt{-5})(1+\sqrt{-5})=6
\end{array} \\
& \Rightarrow p=p c b \Rightarrow c b=1 \Rightarrow b \in R^{*} \left\lvert\, \begin{array}{l}
2
\end{array}\right.
\end{aligned}
$$

UFDs. Def. Evrry non-zuro element can be fartored into prines.
Thm. Uniqueness uy to units \& a permutation.
Thrn. In a UFO, Prime \Leftrightarrow irreducible.
Thr. [skip] UFD $\Leftrightarrow \operatorname{evory} x \neq 0$ has a unigue decomposition into irreducibles.
Thm. In a UFD ged's always exist.
Sketch: Euc domain: $d: R-\{0\} \rightarrow \mathbb{N}$, I.t.

1. $d(a) \leq d(a b)$
2. $\forall a, b$ $\exists q, r$ s.t. $a \approx q b+r$, with $r=0$ or $d(r)<d(b)$
TLM EUC $\Rightarrow P I D$
Thm $P I D \Rightarrow U F D$
PE Take $x ; x \in M$, where M, is a maximal idal containing $\langle x\rangle . M_{1}=\left\langle p_{1}\right\rangle$, P, prime. So $x=p_{1} x_{2} \ldots$
