on f* "Register of good dee /s" 2009,2006
scrunl* on the find exam 2006
on board:

"signal happy \in
both wheres are" Let is a certain specific function, jet: Man $(F) / \rightarrow F$, which we will poorly define later $\operatorname{dot}(A) \equiv|A|$.

$$
\begin{aligned}
& \text { 1. A invertible } \rightleftarrows \operatorname{det}(A) \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \left|\left(a_{11}\right)\right|=a_{11} \\
& \left|\left(\begin{array}{ccc}
a_{11} & -a_{1 n} \\
a_{11} & -a_{n n}
\end{array}\right)\right|:=\sum_{j=1}^{n}(-1)^{1+j} a_{10} \cdot\left|\tilde{A}_{1 j}\right|
\end{aligned}
$$

Examples $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|\left[\left.\begin{array}{lll}1 & 3 & 3 \\ 7 & 5 & 3 \\ 7 & 9 & 1\end{array} \right\rvert\,\right.$
Basic properties: $0 . \operatorname{det}(I)=1$.

1. $\operatorname{det}\left(E_{i j}^{\prime} A\right)=-\operatorname{det}(A) \quad\left[\operatorname{dit} E_{i j}^{\prime}=-1\right]$
"Exchanging two rows flips the sign of dit"
2. $\operatorname{det}\left(E_{i, C}^{2} A\right)=\operatorname{det} A \quad\left[\operatorname{det} E_{i, c}^{2}=c\right]$
"multiplying a row by C multiplies def by C "."
3. $\operatorname{det}\left(E_{i, j, c}^{3} A\right)=\operatorname{det} A \quad\left[\operatorname{det} E_{i j, i}^{3}=1\right]$
"adding C times one row to another dow s not change deft" proof late....

Them Using These properties, the determinant of any $n \times n$ matrix A can be computed.
PE Row reduce A keeping track of the affect on $\operatorname{det} A_{j}$ for r.v.ef $B, \operatorname{det} B=1$ if $B=\left(\begin{array}{l}1 \\ 1, \\ 1\end{array}\right)$, and $\operatorname{det} B=0$ if B has a row of O^{\prime} 's.
Examples $\operatorname{det}\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right) \quad \operatorname{det}\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ dane line

