Question A matrix $A \in M_{m \times n}$ defines a linear trans sad $T_{A}: F^{n} \longrightarrow F^{m}$ by $V \in F^{n}=M_{n \times 1} \mapsto T_{A} V=A \cdot V \in M_{m \times 1} F^{n}$. What's the matrix corresponding to $T_{A} Z_{0}$
... Thus from now hence we will often autumentialy think of a matrix A also as a lit. $F^{n} \rightarrow F^{m}$.

Another way of seeing $[T]_{\beta}^{\gamma}$.

$$
\begin{aligned}
& \beta=\left(v_{1}, V_{n}\right) \mathbb{T} W / \gamma=\left(w_{1} \ldots v_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}^{-} \xrightarrow{[T]_{\beta}^{\gamma}} \mathrm{F}^{-m} \\
& \mathrm{~F}^{-1} \xrightarrow{\left[J_{\beta}\right.} \mathrm{F}^{-}
\end{aligned}
$$

The good and the bad about "matrix algebra":
Good

1 $A+B=B+A, \quad(A+B)+C=A+(B+C)$
(basically, all works for addition $)$

2. $A(B \cdot C)=(A \cdot B) C$
$\exists I$ sit. $A \cdot I=A, I A=A$
3. If $A \cdot A^{-1}=I$, then $A^{-1} A=I$
4.

$$
\begin{aligned}
& (A+B) C=A C+B C \\
& A(B+C)=A B+A C
\end{aligned}
$$

Bad

1. Addition is defined only for matrices of same dims.
2. mut. is definia only if "nite dimension matches, \& produces an output of yet other dims.
3. A^{-1} may not exist own if $A \neq 0$.
4. Generally, $A \cdot B \neq B \cdot A$, evan whin beth make souse.

$$
A(B+C)=A B+A C \left\lvert\, \begin{array}{l|l}
\text { evan when beth make } \\
\text { Sons }
\end{array}\right.
$$

Next goals: I. Compute rank T/A.
2. Compute A^{-1} (whin possible)
3. Solve systems of linear egn's.

