Do not turn this page until instructed.

Math 240 Algebra I - Term Test

University of Toronto, October 24, 2006

Solve the 5 problems on the other side of this page.
 Each of the problems is worth 20 points.
 You have an hour and 45 minutes.

Notes.

- No outside material other than stationary and a basic calculator is allowed.
- We will have an extra hour of class time in our regular class room on Thursday, replacing the first tutorial hour.
- The final exam date was posted by the faculty - it will take place on Wednesday October 13 from 2PM until 5PM at room 3 of the Clara Benson Building, 320 Huron Street (south west of Harbord cross Huron, home of the Faculty of Physical Education and Health).

Good Luck!

Solve the following 5 problems. Each of the problems is worth 20 points. You have an hour and 45 minutes.

Problem 1. Let F be a field with zero element 0_{F}, let V be a vector space with zero element 0_{V} and let $v \in V$ be some vector. Using only the axioms of fields and vector spaces, prove that $0_{F} \cdot v=0_{V}$.

Problem 2.

1. In the field \mathbb{C} of complex numbers, compute

$$
\frac{1}{2+3 i}+\frac{1}{2-3 i} \quad \text { and } \quad \frac{1}{2+3 i}-\frac{1}{2-3 i}
$$

2. Working in the field $\mathbb{Z} / 7$ of integers modulo 7 , make a table showing the values of a^{-1} for every $a \neq 0$.

Problem 3. Let V be a vector space and let W_{1} and W_{2} be subspaces of V. Prove that $W_{1} \cup W_{2}$ is a subspace of V iff $W_{1} \subset W_{2}$ or $W_{2} \subset W_{1}$.

Problem 4. In the vector space $M_{2 \times 2}(\mathbb{Q})$, decide if the matrix $\left(\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right)$ is a linear combination of the elements of $S=\left\{\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\right\}$.

Problem 5. Let V be a finite dimensional vector space and let W_{1} and W_{2} be subspaces of V for which $W_{1} \cap W_{2}=\{0\}$. Denote the linear span of $W_{1} \cup W_{2}$ by $W_{1}+W_{2}$. Prove that $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$.

Good Luck!

