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TOWARDS AN ELEMENTARY THEORY OF FINITE TYPE
INVARIANTS OF INTEGRAL HOMOLOGY SPHERES

DROR BAR-NATAN

This is a pre-preprint. Your comments are welcome.

ABSTRACT. Following Ohtsuki, Garoufalidis, and Habegger we provide an elementary in-
troduction to finite type invariants of integral homology spheres, culminating with a proof
of the upper bound for the magnitude of the space Z of such invariants in terms of the space
A(D) of oriented trivalent graphs modulo the so-called AS and THX relations. We raise the
issue of “the fundamental theorem” for finite type invariants of integral homology spheres,
which says that A(() is also a lower bound for Z (and hence, up to the difference between
a filtered space and a graded space, the two are equal). There are several constructive but
transcendental proofs of the fundamental theorem, and we underline a few problems whose
solution may yield a direct topological proof of that theorem.
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1. INTRODUCTION

1.1. Stories. Recent years saw an explosion of literature (see [B-N6]) on so-called “finite-
type invariants”. The basic idea behind those invariants is simple. Suppose in a certain class
O of objects (whose invariants we seek) there is a natural notion of “a small modification”
of an object in the class. A good example to keep in mind, and the first of that type that
was considered, is the class O = K of knots, whose “small modifications” are the operations
of flipping a crossing from an undercrossing to an overcrossing:

fiip X — X (a common notation for this small modiﬁc:i)*gilghepiosinx )

Using these small modifications, one can “differentiate” an invariant I of objects in the class
O, by declaring the value of the derivative I™") on some pair (object, small modification) to
be the difference of the values of I on the given object before and after the modification.
Assuming some further luck (which certainly occurs in the case of knots), one can talk about
several “sites” on an object in O, and one can carry small modifications of the object in
each site independently, allowing by iteration for the definition of multiple derivatives (™,
defined on pairs (an object, n small modifications occurring in n different sites). By analogy
with the case of knots, where singular knots are used to represent such pairs, these pairs are
often called “n-singular objects”.

Finite type invariants are now the straight-forward analogues of polynomials on a vector
space; namely, we say that an invariant I is of type n if its (n+ 1)-st derivative is identically
0. Le., if I"*) = 0. The analogy with multi-variable calculus persists a bit more: one of the
main ways of studying a type n invariant is through its “weight system” — it’s nth derivative
W = I™. The point is that if 7»*Y = 0, then W is a “constant”. More precisely, it is
oblivious to small modifications made to its argument, an n-singular object, and thus it can
be regarded as a function on n-singular object modulo small modifications. Typically objects
become simpler when regarded modulo small modifications, often turning from relatively
complicated topological objects into easy-to-enumerate combinatorial objects in some class
O,, of “n-symbols”. (In the case of knots, K, is the space of “n-chord diagrams”).

Clearly, if two type n invariants have the same weight system, then their difference is a
type n — 1 invariant, and hence, modulo lower invariants, the enumeration of finite type
invariants reduces to the enumeration of fully integrable weight systems: functionals on O,
that are “integrable n times”; namely, that are the nth derivatives of an invariant. In most
cases treated so far, the latter problem was solved in two steps:

e Constraining: First and more easily, one finds some constraints that functionals
on O, have to satisfy to be integrable once or twice, hence bounding from above the



FINITE TYPE INVARIANTS OF HOMOLOGY SPHERES 3

S R I e

Figure 1. The Anti-Symmetry (AS) and IH X relations.
fig:ASTHX

magnitude of the space Z,, = Z,,(O) of type n invariants by the space A, = A,(0) =
O,/ (constraints found).

e Constructing: And then with much more effort and often using techniques which
are transcendental to the question at hand and with some loss of generality [BS], one
constructs an appropriate “universal finite type invariant” Z = Z© with values in
A= AO) =P, A,(O). In the cases treated so far, it was easy to show that Z is
surjective, and hence the magnitude of Z,, is also bounded from below by the same
space A,.

As already noted, the first class of objects on which those ideas were tried (in fact, before
the generality of the ideas was appreciated), was the class K of knots. This has been a
fruitful experience, as it turned out that the resulting class of invariants, also called “Vassiliev
invariants” [B-N3, Bi, BL, Gol, Go2, Kol, Vasl, Vas2], is rich, interesting, and well connected
to other parts of mathematics. The study of other classes of objects (links, braids [St2, B-N5,
Hu], tangles [LM1, LM2, B-N4], plane curves, etc.) quickly followed, enriching the theory
even further.

Perhaps the first link between Vassiliev invariants and faraway parts of mathematics that
was observed was its link with perturbative Chern-Simons theory [B-N1, B-N2]. Roughly
speaking, the Feynman diagrams that arise in the perturbative expansion of the Chern-
Simons path integral (in the presence of a knot, a “Wilson loop”) are practically the same
diagrams as those in K,. This observation even leads to one of the known constructions of
a “universal Vassiliev invariant” as discussed above [Th, AF].

There was an intriguing part to the story, though. Chern-Simons theory in the absence
of Wilson loops predicts a similar-looking diagram valued invariant of integral homology
spheres, and in a series of papers [AS1, AS2] on perturbative Chern-Simons theory Axelrod
and Singer did practically all that was necessary for its construction (though they have
packaged their results in a slightly different wrapping). This suggested that there ought to
be a theory of finite type invariants of integral homology spheres, whose associated space of
weight systems should have a description in terms of the diagram-combinations that appear
in perturbative Chern-Simons theory — formal linear combinations of trivalent graphs with
oriented vertices modulo the AS and IHX relations of Figure 1. At the time (circa 1992),
such a theory did not exist.

Things started to look better around 1995, when in a short and beautiful paper [Oh] To-
motada Ohtsuki proposed a notion of “small modification” of an integral homology sphere
(roughly, it is a surgery along a single component link), and hence a theory of finite type
invariants of integral homology spheres. In his paper, Ohtsuki also demonstrated a relation-
ship between his class of invariants and a certain class of diagrams, though the diagrams
were not quite the same as those expected from perturbative Chern-Simons theory, and the
AS and THX relations were not present. Later on, in a joint paper of his and S. Garo-
ufalidis [GOJ, the “constraining” step (as above) was completed, finding that the space
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A(M) is precisely the one predicted by perturbative Chern-Simons theory, including the
AS and THX relations. Somewhat later, the “constructing” step was also completed, by
T.Q.T. Le, J. Murakami, and T. Ohtsuki [LMO, Le| (see also a more conceptual construction
in [BGRT1, BGRT?2)).

The purpose of this paper is twofold:

e To increase the accessibility of the “constraining” part of the theory; as it is, it is
spread over several papers [Oh, Ga, GL, GOJ, that combine to a rather formidable
reading challenge. The hardest bit in this challenge is the proof of the T H X relation.
This proof was simplified greatly by N. Habegger [Ha], but we feel that our version
(which is merely an improvement of his) is even simpler.

e To call for the construction of a Hutchings-style integration theory in the context of
finite type invariants of integral homology spheres.

Let me briefly explain what the latter point means. The “constructing” part of the theory,
as described above, is somewhat unsatisfactory. While the constructions in [LMO, Le] and
in [BGRT1, BGRT?2]| are clean and elegant, they use deep mathematics that goes way beyond
the relatively limited-scope mathematics of the “constraining” part. One hopes that there
should be a simpler, downward-inductive, way of “integrating” suitable functionals on O, by
first integrating them to functionals on O,,_;, and then integrating again to get functionals
on O,_», and on until we get functionals on Oy = O, namely, finite type invariants of the
original class of objects.

This downward-inductive approach is no new; in the case of knots it goes back to the
earliest papers on Vassiliev invariants [Vasl, Vas2, BL] and some further progress was made
in [St1, DD, Wi]. A big step forward was then carried by Michael Hutchings [Hu|, who
discovered that the obstruction for the success of this downward inductive process lies in
some combinatorialy-defined homology group, akin to H' of a variant of Kontsevich’s graph
cohomology [Ko2]. Hutchings also proved that this homology group vanishes in the case of
braids, raising hopes that it would also vanish in the case of other finite-type theories.

While the form of Hutchings’ theory is clear in the case of knots (and for the sake of
completeness we review this case in Section 2), much is missing in the case of integral
homology spheres. There are good reasons to believe that the resulting obstruction group
would be H! of Kontsevich’s graph cohomology, but many of the necessary steps along the
way are not yet understood. Thus throughout this paper we try to use notation comapatible
with a future construction of a Hutchings-style integration theory, and towards its end we
disscuss the remaining problems.

1.2. Plan of the paper. We conclude this introducion with the definition of the class M,
of “n-singular integral homology spheres”, and of finite type invariants of integral homology
spheres. Even an introduction should have some contents beyond story-telling. In Section 2
we review the better understood case of finite type invariants of knots and especially we
review Hutchings’ integration theory in the case of knots. Some readers may find that
section interesting on its own right; unfortunately, Hutchings’ approach didn’t receive as
much exposure as it deserves. Thus our review is a bit imbalanced — we quickly run through
some of the material, but spend considerable time reviewing the less-appreciated parts. In
Section 3 we recall some of the background we need from surgery theory and about the triple

linking numbers. In Section 4 we study M,,, the space of “n-symbols” of the present context
and the parallel of the space of n-chord diagrams from the knot context. In Section 5 we
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complete the “constraining” step by studying the conditions that functionals on M,, have to
satisfy to be integrable once; namely, to be the derivatives of functionals on M,_;. In the
final Section 6 we disscuss the ingredients still missing for a construction of a Hutchings-style
integration theory.

1.3. Finite type invariants of integral homology spheres, the definition.

Definition 1.1. An n-singular integral homology sphere is a pair (M, L) where M is an
integral homology sphere and L = (J_, L; is a unit-framed algebraically split ordered n-
component link in M. Namely, the components L; of M are numbered 1 to n (“ordered”),
framed with £1 framing (“unit framed”), and the pairwise linking numbers between the
different components of L are 0 (“algebraically split”). We think of L as marking n sites
for performing small modifications of M, each modification being the surgery on one of the
components of L. Let us temporarily define M,, to be the Z-module of all formal Z-linear
combinations of n-singular integral homology spheres. A correction to the definition of M,,
will be given in Definition 1.2 below. Notice that Mg, which we often simply denote by M,
is simply the space of all Z-linear combinations of integral homology spheres.

If L =L"UL?is a framed link (presented as a union of two sublinks L! and L?) in some
3-manifold M, we denote by (M, L');> the result of surgery! of (M, L') along L?. Namely,
(M, L") > is a pair (M', L), in which M’ is the result of surgery of M along L?, and L' is
the image in M’ of L'. Notice that if (M, L) is an (n+ 1)-singular integral homology sphere,
then (M, L — L;)r, is again an n-singular integral homology sphere for any component L; of
L.

We now wish to define the co-derivative map ¢ : M,,.1 — M,,, whose adjoint will be the
differentiation map for invariants:

def;codiff

Definition 1.2.  Define ¢; on generators by ¢;(M,L) = (M,L — L;) — (M,L — L;),, and
extend it to be a Z-linear map M,y — M,,. For later convinience, we want to set 6 = ¢,
for any 7, but the different i’s may give different answers. We resolve this by redefining M,,.
Set

o §i(M,L) = 8;(M,L)
eq:codiff R
M, = (old M,,) forall 1 <i,7 <nm+1 and all
(n 4 1)-singular integral homology spheres

(1)

We can now set (in the new M,,)
O6(M,L)=(M,L—L;)— (M,L— L;), for anyi.
The relations in equation (1) are called “the co-differentiability relations”.

We can finally differentiate invariants using the adjoint 0 = ¢0* : M} — M7 . That is, if
I € M is a differentiable invariant of n-singular integral homology spheres (namely, which
vanishes on the co-differentiability relations), let its derivative I' € M}, be 0I =T o 6.
Iteratively, one can define multiple derivatives such us I*) for any & > 0.

Definition 1.3. (Ohtsuki [Oh] We say that an invariant I of integral homology spheres if
of type n if I»*Y) = 0. We say that it is of finite type if it is of type n for some natural
number n.

!'We recall some basic facts about surgery in Section 3.1.



6 DROR BAR-NATAN

Unravelling the definitions, we find that I is of type m precisely when for all integral
homology spheres M and all unit-framed algebraically split links L in M,

(2) eq:altsumz (_1)\L"[ (ML’) =0,

LcL
where the sum runs on all sublinks L' of L (including the empty and full sublinks), |L'| is
the number of components of L', and My, is the result of surgery of M along L. We will
not use equation (2) in this paper.

1.4. Acknowledgement. I thank all.

2. THE CASE OF KNOTS

sec:Knots

2.1. Singular knots, the co-differential 6, and finite type invariants. As we have
already indicated in the introduction, the finite-type theory for knots (Vassiliev theory)
is built around the notions of n-singular knots, and differences between overcrossings and

undercrossings. Let us make those notions precise:

. def:nSingularKnot . . . . . .
Definition 2.1." An n-singular knot is an oriented knot in an oriented R3, which

is allowed to have n singular points that locally look like the picture on the Eggoligpoint
For simplicity in the later parts of this section, we only consider framed (singular X
or not) knots, and always use blackboard framing when a knot projection or a

part of a knot projection is drawn.

def ;Kc

Definition 2.3¢  Let K, be the Z-module freely generated by all n-singular knots, modulo
the following “co-differentiability relation”:

Notice that Ky = K is simply the free Z-module generated by all (framed) knots.

Definition 2.3. Let 6 : K,,;1 — K,, be defined by “resolving” any one of the singular points
in an (n + 1)-singular knot in K, 1:

) X AX

Note that thanks to the co-differentiability relation, ¢ is well defined. It is called “the co-
derivative”. We denote the adjoint of ¢ by 0 and call it “the derivative”. It is a map

9: K, — K.

The name “derivative” is justified by the fact that (OV)(K') for some V € K and K €

K11 is by definition the difference of the values of V' on two “neighboring” n-singular knots,
in harmony with the usual definition of derivative for functions on R?.

Definition 2.4. An invariant of knots V' (equivalently, a Z-linear functional on K) is said to
be of finite type n if its (n + 1)-st derivative vanishes, that is, if "'V = 0. (This definition
is the analog of one of the standard definitions of polynomials on R?).
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When thinking about finite type invariants, it is convenient to have in mind the following
ladders of spaces and their duals, printed here with the names of some specific elements that
we will use later:

6 6

— Ky — K, — Ky — ... — K — Ky=K

T — ok, S ok Sk, — L — K K=k
w W w

YV =0 9V =W v

One may take the definition of a general “theory of finite type invariants” to be the data
in (4), with arbitrary “n-singular objects” replacing the n-singular knots. Much of what we
will say below depends only on the existance of the ladders (4), or on the existance of certain
natural extensions thereof, and is therefore quite general.

2.2. Constancy conditions, K, /6K, 1, and chord diagrams. As promised in the in-
troduction, we study invariants of type n by studying their nth derivatives. Clearly, if V' is
of type n and W = 9"V, then OW = 0 (“W is a constant”). Glancing at (4), we see that
W descends to a linear functional, also called W, on K,, /6K, 1:

Definition 2.5. We call K,, := K./6K, 1 the space of “n-symbols” associated with the lad-
ders in (4). (The name is inspired by the theory of differential operators, where the “symbol”
of an operator is essentially its equivalence class modulo lower order operators. The symbol
is responsible for many of the properties of the original operator, and for many purposes, two
operators that have the same symbol are “the same”.) We denote the projection mapping
K, — K, that maps every singular knot to its symbol by 7.

The following classical proposition (see e.g. [B-N3, Bi, BL, Gol, Go2, Kol, Vasl, Vas2]
identifies the space of n-symbols in our case:

Propositi(r))rlrip:ZK.s ol The space K, of n-symbols for (4) is canonically isomorphic to the
space D,, of n-chord diagrams, defined below. O

Definition 2.7. An n-chord diagram is a choice of n pairs of distinct points on
an oriented circle, considered up to orientation preserving homeomorphisms of
. . . . . . 5Chords
the circle. Usually an n-chord diagram is simply drawn as a circle with n chords
(whose ends are the n pairs), as in the 5-chord example on the right. The space

D, is the space of all formal Z-linear combinations of n-chord diagrams.

2.3. Integrability conditions, ker$, lassoing singular points, and four-term rela-
tions. Next, we wish to find conditions that a “potential top derivative” has to satisfy in
order to actually be a top derivative. More precisely, we wish to find conditions that a func-
tional W € K has to satisfy in order to be 9"V for some invariant V. A first condition is that
W must be “integrable once”; namely, there has to be some W' € K*_, with W = oW!. An-
other quick glance at (4), and we see that W is integrable once iff it vanishes on ker §, which
is the same as requiring that W descends to A, = A,(K) := K, /7 (ker §) = K, /(im § +ker §)
(there should be no confusion regarding the identities of the §’s involved). Often elements
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Figure 2. A Topological 4-Term (T4T) relation. Each of the four graphics in the picture
represents a part of an n-singular knot (so there are n — 2 additional singular points not
shown), and, as usual in knot theory, the 4 singular knots in the equation are the same

outside the region shown.
fig:T4T

S B S
o= A - - 2

Figure 3. Lassoing a singular point: Each of the graphics represents an (n —1)-singular knot,
but only one of the singularities is explicitly displayed. Start from the left-most graphic, pull
the “lasso” under the displayed singular point, “lasso” the singular point by crossing each of
the four arcs emenating from it one at a time, and pull the lasso back out, returning to the
initial position. Each time an arc is crossed, the difference between “before” and “after” is
d of an n-singular knot (up to signs). The four n-singular knot thus obtained are the ones
making the Topological 4-Term relation, and § of their signed sum is the difference between
the first and the last (n — 1)-singular knot shown in this figure; namely, it is 0.

fig:Lasso

of A% are refered to as “weight systems”. A more accurate name would be “once-integrable
weight systems”.

We see that it is necessary to understand ker ¢. In Figure 2 we show a family of members
of ker §, the “Topological 4-Term” (T4T) relations. Figure 3 explains how they arise from
“lassoing a singular point”. The following theorem says that this is all:

Theoggmrritinford(Stanford [St1]) The TAT relations of Figure 2 span ker é. O

Pushing the 74T relations down to the level of symbols, we get the well-known 47" rela-
tions, which span 7(ker §): (see e.g. [B-N3])

+ ()--)-I-

We thus find that A4, = (chord diagrams)/(4T relations), as usual in the theory of finite
type invariants of knots.

2.4. Hutchings’ theory of integration. We have so far found that if V' is a type-n in-
variant, then W = 9"V is a linear functional on A,. A question arises whether every linear
functional on A, arises in this way. At least if the ground ring is extended to QQ, the answer
is positive:
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thm: Fund ental

Theorem 2. %The Fundamental Theorem of Finite-Type Invariants, Kontsevich [Kol])
Over Q, for every W € A> there exists a type n invariant V. with W = 0"V. In other words,
every once-integrable weight system s fully integrable.

The problem with the Fundamental Theorem is that all the proofs we have for it are
somehow “transcendental”, using notions from realms outside the present one, and none
of the known proofs settles the question over the integers (see [BS]). In this section we
describe what appears to be the most natural and oldest approach to the proof, having been
mentioned already in [Vasl, BL|. Presently, we are stuck and the so-called “topological”
approach does not lead to a proof. But it seems to me that it’s worth studying further;
when something natural fails, there ought to be a natural reason for that, and it would be
nice to know what it is.

The idea of the topological approach is simple: To get from W to V', we need to “integrate”
n times. Let’s do this one integral at a time. By the definition of A,, we know that we
can integrate once and find W' € K*_, so that 9W! = W. Can we work a bit harder, and
find a “good” W', so that there would be a W? € K*_, with OW? = W!? Proceeding like
that and assuming that all goes well along the way, we would end with a V' = W" € K
with 0"V = W, as required. Thus we are naturally lead to the following conjecture, which
implies the Fundamental Theorem by the backward-inductive argument just sketched:

. conj: Inductlonsti,p . . . . . .
Conjecture 1 very once-integrable invariant of n-singular knots also twice integrable.

Glancing at (4), we see that this is the same as saying that (ker §%)/(ker §) =

This conjecture is somewhat stronger than Theorem 2. Indeed, Theorem 2 is equivalent
to Conjecture 1 restricted to the case when the given invariant has some (possibly high)
derivative identically equal to 0 (exercise!). But it is hard to imagine a topological proof of
the restricted form of Conjecture 1 that would not prove it in full.

The difficulty in Conjecture 1 is that it’s hard to say much about ker 6. In [Hu], Michael
Hutchings was able to translate the statement (ker&?)/(ker§) = 0 to an easier-looking
combinatorial-topological statement, which is implied by and perhaps equivalent to an even
simpler fully combinatorial statement. Furthermore, Hutchings proved the fully combinato-
rial statement in the analogous case of finite-type braid invariants, thus proving Conjecture 1
and Theorem 2 (over Z) in that case, and thus proving the viability of his technique.

Hutchings’ first step was to write a chain of isomorphisms reducing (ker 6%)/(ker §) to
something more manageable. Our next step will be to introduce all the spaces participating
in Hutchings’ chain. First, let us consider the space of all T4T relations:

Definition 3.8. Let K be the Z-module generated by all (framed) knots
having n—2 singularities as in Definition 2.1, and plus one additional “Topo-
logical Relator” singularity that locally looks like the picture on the right,
modulo the same co-differentiability relations as in Definition 2.2Todolefiirelrelato
6 : Kl — K} in the same way as for knots, using equation (3). Finally, /
define b : K! — K, by mapping the topological relator to the topologi-

cal 4-term relatlon, the 4-term alternating sum inside the paranthesis in
Figure 2.

The spaces K form a ladder similar to the one in (4), and, in fact, they combine with the
ladder in (4) to a single commutative diagram:
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6 6 6 6

e Kl - Kl = Kl ..
eq:RKladders n+1 n n—1
(5) Lo Lo )

6 6 6 6

— Ky — Ky — Ky — .,

In this language, Stanford’s theorem (Theorem 1) says that all L shapes in the above
diagram (compositions ¢ o b of “down” followed by “right”) are exact.

Just like singular knots had symbols which were simplar combinatorial objects (chord
diagrams), so do toplogical relators have combinatorial symbols:

Definition 2.9. Let K} := K. /6K.,,, and let 7 : K} — K} be the projection map.

The following proposition is proved along the same lines as the standard proof of Propo-
sition 2.6.

Proposition 2.10. K! is canonically isomorphic to the space spanned by all A N
“relator symbols”, chord diagrams with n — 2 chords and one —1 pi@@%af@fylﬁxmp
responding to the special singularity of Definition 2.8. An example appears on -

the right. NI

We need to display one additional commutative diagram before we can come to Hutchings’
chain of isomorphisms:

1 6 1 ™ -1
eq:RKsymbols " ’Cnfl — ICnfl — 0
1 I 15 (exact rows).

’Cn L ’Cnfl L) ICnfl — 0

(6)

In this diagram, b is the “symbol level” version of b, and is induced by b : K! | — K, ;
in the usual manner. It can be described combinatorially by

+ -

Hutchings’ chain of isomorphisms is the following chain of equalities and maps: (here the
symbol U means that the space below is a subspace of the space above, and the symbol o
means that the space below is a sub-quotient of the space above)

Ko K K ICrlz—l ICrlz—l ’Crlz—l ’Crlz—l
o U U aeg Ay A A
ker 6% » kermob kerbor 7 l(kerb) . kerb
keré Nimé=1imbNk = = .
kero Lo HHROTHRORIREET T T ker b kerb  m(kerd)

Theorem 3. (Hutchings [Hu]) All maps in the above chain are isomorphisms. In particular,
(ker 6?)/(ker &) ~ (ker b)/(w(ker b)).

Proof. Immediate from diagrams (5) and (6). O

It doesn’t look like we've achieved much, but in fact we did, as it seems that (kerb)/(7 (kerb))
is easier to digest than the original space of interest, (ker 6?)/(ker §). The point is that ker b
lives fully in the combinatorial realm, being essentially the space of all relations between 47T
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relations at the symbol level. Similarly, m(kerd) is the space of projections to the symbol
level of relation between 47 relations, and hence we have shown

Corollary 2.11. Conjecture 1 1s equivalent to the statement “every relation between 4T
relations at the symbol level has a lift to the topological level”.

An obvious approach to proving Conjecture 1 thus emerges:

e Combinatorial step: Find all relations between 4T relations at the symbols level; that
is, find a generating set for ker b.

e For every relation found in the combinatorial step, show that it lifts to the topological
level.

So far, the problem with this approach appears to be in the combinatorial step. There
is a conjectural generating set K2 | for kerb. Every element in K2 , indeed has a lifting
to ker b, but we still don’t know if K2 | indeed generates kerb. We state these facts very
briefly; more information can be found in [Hu] and in [BS].

Definition 2.12. Define K2_, by

- {(@. (Y- (DO}

As usual, each graphic in the above formula represents a large number of elements of K2 |,
obtained from the graphic by the addition of n — 3 chords (first graphic), or n — 5 chords
(second graphic), or n — 4 chords (third graphic), or n — 2 chords (fourth graphic). Define

alsob: K2 | — KL | by

(D) O

()=
s

2
)+
b14T-3 _<Z + . +
GExa.lzp(e @ )GExgple @ N N
Conjecture 2.. The sequence K2, N KL, Ky is exact.

A parallel of Conjecture 2 for braids was proven by Hutchings in [Hu].



12 DROR BAR-NATAN

LTDefinition

Left Twist| =

Figure 4. The Left Twist (LT).

Erercise 2.13. Find a space K2 and maps § : K2 — K2, and b : K2 — K. that fit into a
commutative diagram,

2 6 2 =2
K:n K:n——l ﬁCTL 1 0

1o I lg (exact rows),
Kl ELIN K, — K, — 0

and hence show that the relations in ker b all lift to ker b.

Question 1. Is the sequence K2_, — K!_, - K,_; related to Kontsevich’s graph coho-
mology [Ko2]?

3. PRELIMINARIES

sec:prels

rsurgery

3.1. Surgery and the Kirby ca culus.

3.2. The Borromean rings.

subsec:mu

3.3. The triple linking numbers /i;;.

4. CONSTANCY CONDITIONS OR M, /6 M, 11

sec:const

4.1. Statement of the result.

Definition 4.1. Let ), be the unital commutative algebra over Z generated by symbols
Y, for distinct indices 1 <, j, k& < n, modulo the anti-cyclicity relations Y, = szkl = Yju.
Warning 4.2. Below we will mostly regard ), as an Z-module, and not as an algebra. Thus
we will only use the product of ), as a convenient way of writing certain elements and linear
combinations of elements. The subspaces of ), that we will consider will be subspaces in
the linear sense, but not ideals or subalgebras, and similarly for quotients and maps from or

to V,.
It is easy to define a map p: M,,/6 M1 — V,. For an n-link L set
wy= [ v
1<i<j<k<n

It follows from Section 3.3 that this definition descends to the quotient of M, by the co-
derivatives of (n + 1)-links.
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MaskDefinitiog ‘ ~_— ‘ ‘ ~_ ‘ ‘

N -

Figure 5. A 3-mask.

B —&

deltaMask(S ‘ ‘\/‘ ‘\/‘ ‘ o
LD = — | Bir
I

Figure 6. The co-derivative of a 3-mask.

)

BLTDefinition Bundle o %
Left Twist| —

A

7

Figure 7. The Bundle Left Twist (BLT) is the same as the Left Twist, only that the strands
within each “bundle” are not twisted internally.

Theorem 4. The thus defined map pn: M, /6 M1 — Y, is an isomorphism.

4.2. On a connected space, polynomials are determined by their values at any
given point.

4.3. Homotopy invariance and pure braids.
4.4. The mask and the interchange move.

4.5. Reducing third commutators.

5. INTEGRABILITY CONDITIONS OR ker 6
sec:integ
5.1. +1 and —1 surgeries are opposites.
5.2. A total twist is a composition of many little ones.
5.3. The two ways of building an interchange.

5.4. Lassoing a Borromean link and the THX relation.
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Figure 8. Undoing a Bundle Left Twist one crossing at a time.

o0

TotalTwist
<l>=lix=lly = + +
= ==
N
(.
Figure 9. The Total Twist Relation (TTR).
" b [l |- 4| 41| |4

Figure 10. The Total Twist Relation (TTR).
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Figure 11. The Monster

fig:Monster

YmbYrgb(Yrng;)yb - Yrgp - Y%)yb) = K“abYrgb(Yrgp?pyb - Ypyb)

= rabY;ng;”gp pyb — Y;aby;gby;)yb - Y;”ng;”ng;pyb + Y;”ngZoyb
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N T
/~

Figure 12. Lassoing a Borromean link.

o

N e

= K‘ab}/;"gby;gp pyb — K‘ab}/;'gbygayb - Y;“gb}/;“gp}/;ayb + Y;“gb}/;)yb

(The last equality holds because in the two error terms, Y;qY,g and Y., the component p
is unknotted). Now reduce the component r using the total twist relation. Only the first
term is affected, and 3 of the 6 terms that are produced from its reduction cancel against
the 3 remaining terms of the above equation. The result is:

= (Y;“abY;“gp - Y;“ab - Y;“gp)f/;ayb = K‘ab}/;'gp}z)yb - }/;)yb-

The last term here drops out because in it the component r is unknotted, and so the end

result is f/}abY;ng;,yb. In graphical terms, this is precisely the graph I! Cyclically permuting
the roles of r, g, and b, we find that we have proven the I HX relation.

6. TOWARDS A HUTCHINGS’ THEORY OF INTEGRATION IN THE CASE OF INTEGRAL
HOMOLOGY SPHERES

sec:Hutchings
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