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2 DROR BAR-NATAN5.1. +1 and �1 surgeries are opposites 135.2. A total twist is a composition of many little ones 135.3. The two ways of building an interchange 135.4. Lassoing a Borromean link and the IHX relation 136. Towards a Hutchings' theory of integration in the case of integral homology spheres 15References 151. Introduction1.1. Stories. Recent years saw an explosion of literature (see [B-N6]) on so-called \�nite-type invariants". The basic idea behind those invariants is simple. Suppose in a certain classO of objects (whose invariants we seek) there is a natural notion of \a small modi�cation"of an object in the class. A good example to keep in mind, and the �rst of that type thatwas considered, is the class O = K of knots, whose \small modi�cations" are the operationsof 
ipping a crossing from an undercrossing to an overcrossing:flip �a common notation for this small modi�cation isDoublePoint �Using these small modi�cations, one can \di�erentiate" an invariant I of objects in the classO, by declaring the value of the derivative I(1) on some pair (object, small modi�cation) tobe the di�erence of the values of I on the given object before and after the modi�cation.Assuming some further luck (which certainly occurs in the case of knots), one can talk aboutseveral \sites" on an object in O, and one can carry small modi�cations of the object ineach site independently, allowing by iteration for the de�nition of multiple derivatives I(n),de�ned on pairs (an object, n small modi�cations occurring in n di�erent sites). By analogywith the case of knots, where singular knots are used to represent such pairs, these pairs areoften called \n-singular objects".Finite type invariants are now the straight-forward analogues of polynomials on a vectorspace; namely, we say that an invariant I is of type n if its (n+1)-st derivative is identically0. I.e., if I(n+1) � 0. The analogy with multi-variable calculus persists a bit more: one of themain ways of studying a type n invariant is through its \weight system" | it's nth derivativeW = I(n). The point is that if I(n+1) � 0, then W is a \constant". More precisely, it isoblivious to small modi�cations made to its argument, an n-singular object, and thus it canbe regarded as a function on n-singular object modulo small modi�cations. Typically objectsbecome simpler when regarded modulo small modi�cations, often turning from relativelycomplicated topological objects into easy-to-enumerate combinatorial objects in some class�On of \n-symbols". (In the case of knots, �Kn is the space of \n-chord diagrams").Clearly, if two type n invariants have the same weight system, then their di�erence is atype n � 1 invariant, and hence, modulo lower invariants, the enumeration of �nite typeinvariants reduces to the enumeration of fully integrable weight systems: functionals on �Onthat are \integrable n times"; namely, that are the nth derivatives of an invariant. In mostcases treated so far, the latter problem was solved in two steps:� Constraining: First and more easily, one �nds some constraints that functionalson �On have to satisfy to be integrable once or twice, hence bounding from above the



FINITE TYPE INVARIANTS OF HOMOLOGY SPHERES 3AS + = 0IHX �=Figure 1. The Anti-Symmetry (AS) and IHX relations.fig:ASIHXmagnitude of the space In = In(O) of type n invariants by the space An = An(O) =�On=(constraints found).� Constructing: And then with much more e�ort and often using techniques whichare transcendental to the question at hand and with some loss of generality [BS], oneconstructs an appropriate \universal �nite type invariant" Z = ZO with values inA = A(O) = LnAn(O). In the cases treated so far, it was easy to show that Z issurjective, and hence the magnitude of In is also bounded from below by the samespace An.As already noted, the �rst class of objects on which those ideas were tried (in fact, beforethe generality of the ideas was appreciated), was the class K of knots. This has been afruitful experience, as it turned out that the resulting class of invariants, also called \Vassilievinvariants" [B-N3, Bi, BL, Go1, Go2, Ko1, Vas1, Vas2], is rich, interesting, and well connectedto other parts of mathematics. The study of other classes of objects (links, braids [St2, B-N5,Hu], tangles [LM1, LM2, B-N4], plane curves, etc.) quickly followed, enriching the theoryeven further.Perhaps the �rst link between Vassiliev invariants and faraway parts of mathematics thatwas observed was its link with perturbative Chern-Simons theory [B-N1, B-N2]. Roughlyspeaking, the Feynman diagrams that arise in the perturbative expansion of the Chern-Simons path integral (in the presence of a knot, a \Wilson loop") are practically the samediagrams as those in �Kn. This observation even leads to one of the known constructions ofa \universal Vassiliev invariant" as discussed above [Th, AF].There was an intriguing part to the story, though. Chern-Simons theory in the absenceof Wilson loops predicts a similar-looking diagram valued invariant of integral homologyspheres, and in a series of papers [AS1, AS2] on perturbative Chern-Simons theory Axelrodand Singer did practically all that was necessary for its construction (though they havepackaged their results in a slightly di�erent wrapping). This suggested that there ought tobe a theory of �nite type invariants of integral homology spheres, whose associated space ofweight systems should have a description in terms of the diagram-combinations that appearin perturbative Chern-Simons theory | formal linear combinations of trivalent graphs withoriented vertices modulo the AS and IHX relations of Figure 1. At the time (circa 1992),such a theory did not exist.Things started to look better around 1995, when in a short and beautiful paper [Oh] To-motada Ohtsuki proposed a notion of \small modi�cation" of an integral homology sphere(roughly, it is a surgery along a single component link), and hence a theory of �nite typeinvariants of integral homology spheres. In his paper, Ohtsuki also demonstrated a relation-ship between his class of invariants and a certain class of diagrams, though the diagramswere not quite the same as those expected from perturbative Chern-Simons theory, and theAS and IHX relations were not present. Later on, in a joint paper of his and S. Garo-ufalidis [GO], the \constraining" step (as above) was completed, �nding that the space



4 DROR BAR-NATANA(M) is precisely the one predicted by perturbative Chern-Simons theory, including theAS and IHX relations. Somewhat later, the \constructing" step was also completed, byT.Q.T. Le, J. Murakami, and T. Ohtsuki [LMO, Le] (see also a more conceptual constructionin [BGRT1, BGRT2]).The purpose of this paper is twofold:� To increase the accessibility of the \constraining" part of the theory; as it is, it isspread over several papers [Oh, Ga, GL, GO], that combine to a rather formidablereading challenge. The hardest bit in this challenge is the proof of the IHX relation.This proof was simpli�ed greatly by N. Habegger [Ha], but we feel that our version(which is merely an improvement of his) is even simpler.� To call for the construction of a Hutchings-style integration theory in the context of�nite type invariants of integral homology spheres.Let me brie
y explain what the latter point means. The \constructing" part of the theory,as described above, is somewhat unsatisfactory. While the constructions in [LMO, Le] andin [BGRT1, BGRT2] are clean and elegant, they use deep mathematics that goes way beyondthe relatively limited-scope mathematics of the \constraining" part. One hopes that thereshould be a simpler, downward-inductive, way of \integrating" suitable functionals on �On, by�rst integrating them to functionals on On�1, and then integrating again to get functionalson On�2, and on until we get functionals on O0 = O, namely, �nite type invariants of theoriginal class of objects.This downward-inductive approach is no new; in the case of knots it goes back to theearliest papers on Vassiliev invariants [Vas1, Vas2, BL] and some further progress was madein [St1, DD, Wi]. A big step forward was then carried by Michael Hutchings [Hu], whodiscovered that the obstruction for the success of this downward inductive process lies insome combinatorialy-de�ned homology group, akin to H1 of a variant of Kontsevich's graphcohomology [Ko2]. Hutchings also proved that this homology group vanishes in the case ofbraids, raising hopes that it would also vanish in the case of other �nite-type theories.While the form of Hutchings' theory is clear in the case of knots (and for the sake ofcompleteness we review this case in Section 2), much is missing in the case of integralhomology spheres. There are good reasons to believe that the resulting obstruction groupwould be H1 of Kontsevich's graph cohomology, but many of the necessary steps along theway are not yet understood. Thus throughout this paper we try to use notation comapatiblewith a future construction of a Hutchings-style integration theory, and towards its end wedisscuss the remaining problems.1.2. Plan of the paper. We conclude this introducion with the de�nition of the classMnof \n-singular integral homology spheres", and of �nite type invariants of integral homologyspheres. Even an introduction should have some contents beyond story-telling. In Section 2we review the better understood case of �nite type invariants of knots and especially wereview Hutchings' integration theory in the case of knots. Some readers may �nd thatsection interesting on its own right; unfortunately, Hutchings' approach didn't receive asmuch exposure as it deserves. Thus our review is a bit imbalanced | we quickly run throughsome of the material, but spend considerable time reviewing the less-appreciated parts. InSection 3 we recall some of the background we need from surgery theory and about the triplelinking numbers. In Section 4 we study �Mn, the space of \n-symbols" of the present contextand the parallel of the space of n-chord diagrams from the knot context. In Section 5 we



FINITE TYPE INVARIANTS OF HOMOLOGY SPHERES 5complete the \constraining" step by studying the conditions that functionals on �Mn have tosatisfy to be integrable once; namely, to be the derivatives of functionals onMn�1. In the�nal Section 6 we disscuss the ingredients still missing for a construction of a Hutchings-styleintegration theory.1.3. Finite type invariants of integral homology spheres, the de�nition.De�nition 1.1. An n-singular integral homology sphere is a pair (M;L) where M is anintegral homology sphere and L = Sni=1 Li is a unit-framed algebraically split ordered n-component link in M . Namely, the components Li of M are numbered 1 to n (\ordered"),framed with �1 framing (\unit framed"), and the pairwise linking numbers between thedi�erent components of L are 0 (\algebraically split"). We think of L as marking n sitesfor performing small modi�cations of M , each modi�cation being the surgery on one of thecomponents of L. Let us temporarily de�ne Mn to be the Z-module of all formal Z-linearcombinations of n-singular integral homology spheres. A correction to the de�nition ofMnwill be given in De�nition 1.2 below. Notice thatM0, which we often simply denote byM,is simply the space of all Z-linear combinations of integral homology spheres.If L = L1 [ L2 is a framed link (presented as a union of two sublinks L1 and L2) in some3-manifold M , we denote by (M;L1)L2 the result of surgery1 of (M;L1) along L2. Namely,(M;L1)L2 is a pair (M 0; L10), in which M 0 is the result of surgery of M along L2, and L10 isthe image in M 0 of L1. Notice that if (M;L) is an (n+1)-singular integral homology sphere,then (M;L�Li)Li is again an n-singular integral homology sphere for any component Li ofL.We now wish to de�ne the co-derivative map � :Mn+1 !Mn, whose adjoint will be thedi�erentiation map for invariants:De�nition 1.2.def:codiff De�ne �i on generators by �i(M;L) = (M;L � Li) � (M;L � Li)Li , andextend it to be a Z-linear mapMn+1 !Mn. For later convinience, we want to set � = �ifor any i, but the di�erent i's may give di�erent answers. We resolve this by rede�ningMn.Set eq:codiffMn = (oldMn),0@ �i(M;L) = �j(M;L)for all 1 � i; j � n + 1 and all(n+1)-singular integral homology spheres1A :(1)We can now set (in the newMn)�(M;L) = (M;L� Li)� (M;L� Li)Li for any i:The relations in equation (1) are called \the co-di�erentiability relations".We can �nally di�erentiate invariants using the adjoint @ = �? :M?n !M?n+1. That is, ifI 2 M?n is a di�erentiable invariant of n-singular integral homology spheres (namely, whichvanishes on the co-di�erentiability relations), let its derivative I 0 2 M?n+1 be @I = I � �.Iteratively, one can de�ne multiple derivatives such us I(k) for any k � 0.De�nition 1.3. (Ohtsuki [Oh] We say that an invariant I of integral homology spheres ifof type n if I(n+1) � 0. We say that it is of �nite type if it is of type n for some naturalnumber n.1We recall some basic facts about surgery in Section 3.1.



6 DROR BAR-NATANUnravelling the de�nitions, we �nd that I is of type n precisely when for all integralhomology spheres M and all unit-framed algebraically split links L in M ,eq:altsumXL0�L(�1)jL0jI (ML0) = 0;(2)where the sum runs on all sublinks L0 of L (including the empty and full sublinks), jL0j isthe number of components of L0, and ML0 is the result of surgery of M along L0. We willnot use equation (2) in this paper.1.4. Acknowledgement. I thank all.2. The case of knotssec:Knots2.1. Singular knots, the co-di�erential �, and �nite type invariants. As we havealready indicated in the introduction, the �nite-type theory for knots (Vassiliev theory)is built around the notions of n-singular knots, and di�erences between overcrossings andundercrossings. Let us make those notions precise:De�nition 2.1.def:nSingularKnotAn n-singular knot is an oriented knot in an oriented R3 , whichis allowed to have n singular points that locally look like the picture on the right.For simplicity in the later parts of this section, we only consider framed (singularor not) knots, and always use blackboard framing when a knot projection or apart of a knot projection is drawn. DoublePoint
De�nition 2.2.def:KcodiffLet Kn be the Z-module freely generated by all n-singular knots, modulothe following \co-di�erentiability relation":codiff � �=Notice that K0 = K is simply the free Z-module generated by all (framed) knots.De�nition 2.3. Let � : Kn+1 ! Kn be de�ned by \resolving" any one of the singular pointsin an (n + 1)-singular knot in Kn+1:eq:deltadefdeltadef �(3)Note that thanks to the co-di�erentiability relation, � is well de�ned. It is called \the co-derivative". We denote the adjoint of � by @ and call it \the derivative". It is a map@ : K?n ! K?n+1.The name \derivative" is justi�ed by the fact that (@V )(K) for some V 2 K?n and K 2Kn+1 is by de�nition the di�erence of the values of V on two \neighboring" n-singular knots,in harmony with the usual de�nition of derivative for functions on Rd .De�nition 2.4. An invariant of knots V (equivalently, a Z-linear functional on K) is said tobe of �nite type n if its (n+1)-st derivative vanishes, that is, if @n+1V � 0. (This de�nitionis the analog of one of the standard de�nitions of polynomials on Rd).



FINITE TYPE INVARIANTS OF HOMOLOGY SPHERES 7When thinking about �nite type invariants, it is convenient to have in mind the followingladders of spaces and their duals, printed here with the names of some speci�c elements thatwe will use later:eq:ladders: : : �! Kn+1 ��! Kn ��! Kn�1 �! : : : �! K1 ��! K0 = K: : : � K?n+1 � � K?n � � K?n�1  � : : :  � K?1 � � K?0 = K?@n+1V � 0 @nV =W V(4)One may take the de�nition of a general \theory of �nite type invariants" to be the datain (4), with arbitrary \n-singular objects" replacing the n-singular knots. Much of what wewill say below depends only on the existance of the ladders (4), or on the existance of certainnatural extensions thereof, and is therefore quite general.2.2. Constancy conditions, Kn=�Kn+1, and chord diagrams. As promised in the in-troduction, we study invariants of type n by studying their nth derivatives. Clearly, if V isof type n and W = @nV , then @W = 0 (\W is a constant"). Glancing at (4), we see thatW descends to a linear functional, also called W , on Kn=�Kn+1:De�nition 2.5. We call �Kn := Kn=�Kn+1 the space of \n-symbols" associated with the lad-ders in (4). (The name is inspired by the theory of di�erential operators, where the \symbol"of an operator is essentially its equivalence class modulo lower order operators. The symbolis responsible for many of the properties of the original operator, and for many purposes, twooperators that have the same symbol are \the same".) We denote the projection mappingKn ! �Kn that maps every singular knot to its symbol by �.The following classical proposition (see e.g. [B-N3, Bi, BL, Go1, Go2, Ko1, Vas1, Vas2]identi�es the space of n-symbols in our case:Proposition 2.6.prop:KsymbolsThe space �Kn of n-symbols for (4) is canonically isomorphic to thespace Dn of n-chord diagrams, de�ned below. �De�nition 2.7. An n-chord diagram is a choice of n pairs of distinct points onan oriented circle, considered up to orientation preserving homeomorphisms ofthe circle. Usually an n-chord diagram is simply drawn as a circle with n chords(whose ends are the n pairs), as in the 5-chord example on the right. The spaceDn is the space of all formal Z-linear combinations of n-chord diagrams. 5Chords
2.3. Integrability conditions, ker �, lassoing singular points, and four-term rela-tions. Next, we wish to �nd conditions that a \potential top derivative" has to satisfy inorder to actually be a top derivative. More precisely, we wish to �nd conditions that a func-tionalW 2 �K?n has to satisfy in order to be @nV for some invariant V . A �rst condition is thatW must be \integrable once"; namely, there has to be someW 1 2 K?n�1 withW = @W 1. An-other quick glance at (4), and we see that W is integrable once i� it vanishes on ker �, whichis the same as requiring thatW descends to An = An(K) := �Kn=�(ker �) = Kn=(im �+ker �)(there should be no confusion regarding the identities of the �'s involved). Often elements



8 DROR BAR-NATANT4T � � + = 0�Figure 2. A Topological 4-Term (T4T ) relation. Each of the four graphics in the picturerepresents a part of an n-singular knot (so there are n � 2 additional singular points notshown), and, as usual in knot theory, the 4 singular knots in the equation are the sameoutside the region shown. fig:T4TLassoFigure 3. Lassoing a singular point: Each of the graphics represents an (n�1)-singular knot,but only one of the singularities is explicitly displayed. Start from the left-most graphic, pullthe \lasso" under the displayed singular point, \lasso" the singular point by crossing each ofthe four arcs emenating from it one at a time, and pull the lasso back out, returning to theinitial position. Each time an arc is crossed, the di�erence between \before" and \after" is� of an n-singular knot (up to signs). The four n-singular knot thus obtained are the onesmaking the Topological 4-Term relation, and � of their signed sum is the di�erence betweenthe �rst and the last (n� 1)-singular knot shown in this �gure; namely, it is 0.fig:Lassoof A?n are refered to as \weight systems". A more accurate name would be \once-integrableweight systems".We see that it is necessary to understand ker �. In Figure 2 we show a family of membersof ker �, the \Topological 4-Term" (T4T ) relations. Figure 3 explains how they arise from\lassoing a singular point". The following theorem says that this is all:Theorem 1.thm:Stanford(Stanford [St1]) The T4T relations of Figure 2 span ker �. �Pushing the T4T relations down to the level of symbols, we get the well-known 4T rela-tions, which span �(ker �): (see e.g. [B-N3])4T : 4T � = � :We thus �nd that An = (chord diagrams)=(4T relations), as usual in the theory of �nitetype invariants of knots.2.4. Hutchings' theory of integration. We have so far found that if V is a type-n in-variant, then W = @nV is a linear functional on An. A question arises whether every linearfunctional on An arises in this way. At least if the ground ring is extended to Q , the answeris positive:



FINITE TYPE INVARIANTS OF HOMOLOGY SPHERES 9Theorem 2.thm:Fundamental(The Fundamental Theorem of Finite-Type Invariants, Kontsevich [Ko1])Over Q , for every W 2 A?n there exists a type n invariant V with W = @nV . In other words,every once-integrable weight system is fully integrable.The problem with the Fundamental Theorem is that all the proofs we have for it aresomehow \transcendental", using notions from realms outside the present one, and noneof the known proofs settles the question over the integers (see [BS]). In this section wedescribe what appears to be the most natural and oldest approach to the proof, having beenmentioned already in [Vas1, BL]. Presently, we are stuck and the so-called \topological"approach does not lead to a proof. But it seems to me that it's worth studying further;when something natural fails, there ought to be a natural reason for that, and it would benice to know what it is.The idea of the topological approach is simple: To get fromW to V , we need to \integrate"n times. Let's do this one integral at a time. By the de�nition of An, we know that wecan integrate once and �nd W 1 2 K?n�1 so that @W 1 = W . Can we work a bit harder, and�nd a \good" W 1, so that there would be a W 2 2 K?n�2 with @W 2 = W 1? Proceeding likethat and assuming that all goes well along the way, we would end with a V = W n 2 K?0with @nV = W , as required. Thus we are naturally lead to the following conjecture, whichimplies the Fundamental Theorem by the backward-inductive argument just sketched:Conjecture 1.conj:InductionStepEvery once-integrable invariant of n-singular knots also twice integrable.Glancing at (4), we see that this is the same as saying that (ker �2)=(ker �) = 0.This conjecture is somewhat stronger than Theorem 2. Indeed, Theorem 2 is equivalentto Conjecture 1 restricted to the case when the given invariant has some (possibly high)derivative identically equal to 0 (exercise!). But it is hard to imagine a topological proof ofthe restricted form of Conjecture 1 that would not prove it in full.The di�culty in Conjecture 1 is that it's hard to say much about ker �2. In [Hu], MichaelHutchings was able to translate the statement (ker �2)=(ker �) = 0 to an easier-lookingcombinatorial-topological statement, which is implied by and perhaps equivalent to an evensimpler fully combinatorial statement. Furthermore, Hutchings proved the fully combinato-rial statement in the analogous case of �nite-type braid invariants, thus proving Conjecture 1and Theorem 2 (over Z) in that case, and thus proving the viability of his technique.Hutchings' �rst step was to write a chain of isomorphisms reducing (ker �2)=(ker �) tosomething more manageable. Our next step will be to introduce all the spaces participatingin Hutchings' chain. First, let us consider the space of all T4T relations:De�nition 2.8.def:Rn Let K1n be the Z-module generated by all (framed) knotshaving n�2 singularities as in De�nition 2.1, and plus one additional \Topo-logical Relator" singularity that locally looks like the picture on the right,modulo the same co-di�erentiability relations as in De�nition 2.2. De�ne� : K1n+1 ! K1n in the same way as for knots, using equation (3). Finally,de�ne b : K1n ! Kn by mapping the topological relator to the topologi-cal 4-term relation, the 4-term alternating sum inside the paranthesis inFigure 2. TopologicalRelator
The spaces K1n form a ladder similar to the one in (4), and, in fact, they combine with theladder in (4) to a single commutative diagram:



10 DROR BAR-NATANeq:RKladders: : : ��! K1n+1 ��! K1n ��! K1n�1 ��! : : :# b # b # b: : : ��! Kn+1 ��! Kn ��! Kn�1 ��! : : : ;(5)In this language, Stanford's theorem (Theorem 1) says that all L shapes in the abovediagram (compositions � � b of \down" followed by \right") are exact.Just like singular knots had symbols which were simplar combinatorial objects (chorddiagrams), so do toplogical relators have combinatorial symbols:De�nition 2.9. Let �K1n := K1n=�K1n+1, and let � : K1n ! �K1n be the projection map.The following proposition is proved along the same lines as the standard proof of Propo-sition 2.6.Proposition 2.10. �K1n is canonically isomorphic to the space spanned by all\relator symbols", chord diagrams with n � 2 chords and one piece cor-responding to the special singularity of De�nition 2.8. An example appears onthe right. RelatorExampleWe need to display one additional commutative diagram before we can come to Hutchings'chain of isomorphisms:eq:RKsymbolsK1n ��! K1n�1 ��! �K1n�1 �! 0# b # b # �bKn ��! Kn�1 ��! �Kn�1 �! 0 (exact rows):(6)In this diagram, �b is the \symbol level" version of b, and is induced by b : K1n�1 ! Kn�1in the usual manner. It can be described combinatorially by�b :barb � +� :Hutchings' chain of isomorphisms is the following chain of equalities and maps: (here thesymbol [ means that the space below is a subspace of the space above, and the symbolmeans that the space below is a sub-quotient of the space above)Kn Kn�1 Kn�1 K1n�1 K1n�1 K1n�1 �K1n�1[ [ker �2ker � ��! ker � \ im �= im b \ ker � b � ker � � bker b = ker�b � �ker b = ��1(ker �b)ker b ��! ker �b�(ker b) :Theorem 3. (Hutchings [Hu]) All maps in the above chain are isomorphisms. In particular,(ker �2)=(ker �) ' (ker �b)=(�(ker b)).Proof. Immediate from diagrams (5) and (6). �It doesn't look like we've achieved much, but in fact we did, as it seems that (ker�b)=(�(ker b))is easier to digest than the original space of interest, (ker �2)=(ker �). The point is that ker �blives fully in the combinatorial realm, being essentially the space of all relations between 4T



FINITE TYPE INVARIANTS OF HOMOLOGY SPHERES 11relations at the symbol level. Similarly, �(ker b) is the space of projections to the symbollevel of relation between 4T relations, and hence we have shownCorollary 2.11. Conjecture 1 is equivalent to the statement \every relation between 4Trelations at the symbol level has a lift to the topological level".An obvious approach to proving Conjecture 1 thus emerges:� Combinatorial step: Find all relations between 4T relations at the symbols level; thatis, �nd a generating set for ker �b.� For every relation found in the combinatorial step, show that it lifts to the topologicallevel.So far, the problem with this approach appears to be in the combinatorial step. Thereis a conjectural generating set �K2n�1 for ker �b. Every element in �K2n�1 indeed has a liftingto ker b, but we still don't know if �K2n�1 indeed generates ker �b. We state these facts verybrie
y; more information can be found in [Hu] and in [BS].De�nition 2.12. De�ne �K2n�1 by�K2n�1 = span�3T ;8T ;14T ;G � :As usual, each graphic in the above formula represents a large number of elements of �K2n�1,obtained from the graphic by the addition of n � 3 chords (�rst graphic), or n � 5 chords(second graphic), or n � 4 chords (third graphic), or n � 2 chords (fourth graphic). De�nealso �b : �K2n�1 ! �K1n�1 by�b�3T � =b3T + +�b�8T � =b8T-1 � �+b8T-2 � �+ +�b�14T � =b14T-1 � � �+ +b14T-2 � �+ +b14T-3 � �+ +�b�GExample � =bGExample + + :Conjecture 2.conj:K2 The sequence �K2n�1 �b�! �K1n�1 �b�! �Kn�1 is exact.A parallel of Conjecture 2 for braids was proven by Hutchings in [Hu].
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Figure 4. The Left Twist (LT).Exercise 2.13. Find a space K2n and maps � : K2n ! K2n�1 and b : K2n ! K1n that �t into acommutative diagram,K2n ��! K2n�1 ��! �K2n�1 �! 0# b # b # �bK1n ��! K1n�1 ��! �K1n�1 �! 0 (exact rows);and hence show that the relations in ker �b all lift to ker b.Question 1. Is the sequence �K2n�1 �b�! �K1n�1 �b�! �Kn�1 related to Kontsevich's graph coho-mology [Ko2]? 3. Preliminariessec:prels3.1. Surgery and the Kirby calculus.subsec:surgery3.2. The Borromean rings.3.3. The triple linking numbers �ijk.subsec:mu4. Constancy conditions or Mn=�Mn+1sec:const4.1. Statement of the result.De�nition 4.1. Let Yn be the unital commutative algebra over Z generated by symbolsYijk for distinct indices 1 � i; j; k � n, modulo the anti-cyclicity relations Yijk = Y �1jik = Yjki.Warning 4.2. Below we will mostly regard Yn as an Z-module, and not as an algebra. Thuswe will only use the product of Yn as a convenient way of writing certain elements and linearcombinations of elements. The subspaces of Yn that we will consider will be subspaces inthe linear sense, but not ideals or subalgebras, and similarly for quotients and maps from orto Yn.It is easy to de�ne a map � :Mn=�Mn+1 ! Yn. For an n-link L set�(L) = Y1�i<j<k�nY �ijk(L)ijk :It follows from Section 3.3 that this de�nition descends to the quotient of Mn by the co-derivatives of (n+ 1)-links.
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MaskDefinition RT RT RTRT RT RTRT RT RT
Figure 5. A 3-mask.deltaMask� BLTFigure 6. The co-derivative of a 3-mask.

BLTDefinitionLeft TwistBundle
Figure 7. The Bundle Left Twist (BLT) is the same as the Left Twist, only that the strandswithin each \bundle" are not twisted internally.Theorem 4. The thus de�ned map � :Mn=�Mn+1 ! Yn is an isomorphism.4.2. On a connected space, polynomials are determined by their values at anygiven point.4.3. Homotopy invariance and pure braids.4.4. The mask and the interchange move.4.5. Reducing third commutators.5. Integrability conditions or ker �sec:integ5.1. +1 and �1 surgeries are opposites.5.2. A total twist is a composition of many little ones.5.3. The two ways of building an interchange.5.4. Lassoing a Borromean link and the IHX relation.
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UndoingBLT� = �

= � = �
+ +

Figure 8. Undoing a Bundle Left Twist one crossing at a time.
TotalTwist = + +

Figure 9. The Total Twist Relation (TTR).TTR � ��+= +Figure 10. The Total Twist Relation (TTR).
Monster �p

y b
g r

Figure 11. The Monster fig:Monster~YrabYrgb(YrgpYpyb � Yrgp � Ypyb) = ~YrabYrgb(Yrgp ~Ypyb � Ypyb)= YrabYrgbYrgp ~Ypyb � YrabYrgbYpyb � YrgbYrgp ~Ypyb + YrgbYpyb
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Figure 12. Lassoing a Borromean link.= YrabYrgbYrgp ~Ypyb � YrabYrgb ~Ypyb � YrgbYrgp ~Ypyb + Yrgb ~Ypyb(The last equality holds because in the two error terms, YrabYrgb and Yrgb, the component pis unknotted). Now reduce the component r using the total twist relation. Only the �rstterm is a�ected, and 3 of the 6 terms that are produced from its reduction cancel againstthe 3 remaining terms of the above equation. The result is:= (YrabYrgp � Yrab � Yrgp) ~Ypyb = ~Yrab ~Yrgp ~Ypyb � ~Ypyb:The last term here drops out because in it the component r is unknotted, and so the endresult is ~Yrab ~Yrgp ~Ypyb. In graphical terms, this is precisely the graph I! Cyclically permutingthe roles of r, g, and b, we �nd that we have proven the IHX relation.6. Towards a Hutchings' theory of integration in the case of integralhomology spheressec:Hutchings References[AF] D. Altschuler and L. Freidal, Vassiliev knot invariants and Chern-Simons perturbation theory toall orders, q-alg/9603010 preprint, March 1996.[AS1] S. Axelrod and I. M. Singer, Chern-Simons Perturbation Theory, Proc. XXth DGM Conference(New York, 1991) (S. Catto and A. Rocha, eds.) World Scienti�c, 1992, 3{45.[AS2] and , Chern-Simons Perturbation Theory II, Jour. Di�. Geom., 39 (1994) 173{213.[B-N1] D. Bar-Natan, Weights of Feynman diagrams and the Vassiliev knot invariants, February 1991preprint, available from http://www.ma.huji.ac.il/~drorbn.[B-N2] , Perturbative Aspects of the Chern-Simons Topological Quantum Field Theory, Ph.D. the-sis, Princeton Univ. Dep. of Mathematics, June 1991.[B-N3] , On the Vassiliev knot invariants, Topology 34 423{472 (1995).[B-N4] , Non-associative tangles, in Geometric topology (proceedings of the Georgia internationaltopology conference), (W. H. Kazez, ed.), 139{183, Amer. Math. Soc. and International Press,Providence, 1997.[B-N5] , Vassiliev and quantum invariants of braids, in Proc. of Symp. in Appl. Math. 51 (1996)129{144, The interface of knots and physics, (L. H. Kau�man, ed.), Amer. Math. Soc., Providence.[B-N6] , Bibliography of Vassiliev Invariants, web document, http://www.ma.huji.ac.il/~drorbn.[BGRT1] , S. Garoufalidis, L. Rozansky and D. Thurston, The �Arhus invariant of rational homology3-spheres I: A highly non trivial 
at connection on S3, Hebrew University, Harvard University,University of Illinois at Chicago and University of California at Berkeley preprint, June 1997. Seealso q-alg/9706004.



16 DROR BAR-NATAN[BGRT2] , , and , The �Arhus invariant of rational homology 3-spheres II: In-variance and universality, Hebrew University, Harvard University, University of Illinois at Chicagoand University of California at Berkeley preprint, January 1998. See also math/9801049.[BS] and A. Stoimenow, The fundamental theorem of Vassiliev invariants, in Proc. of the �ArhusConf. Geometry and physics, (J. E. Andersen, J. Dupont, H. Pedersen, and A. Swann, eds.), lecturenotes in pure and applied mathematics 184 (1997) 101{134, Marcel Dekker, New-York. See alsoq-alg/9702009.[Bi] J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. 28 (1993) 253{287.[BL] and X-S. Lin, Knot polynomials and Vassiliev's invariants, Inv. Math. 111 (1993) 225{270.[DD] M. Domergue and P. Donato, Integrating a weight system of order n to an invariant of (n � 1)-singular knots, Jour. of Knot Theory and its Rami�cations, 5(1) (1996) 23{35.[Ga] S. Garoufalidis, On �nite type 3-manifold invariants I, Jour. of Knot Theory and its Rami�cations5 (1996) 441{462.[GL] and J. Levine, On �nite type 3-manifold invariants II,Math. Annalen 306 (1996) 691{718.See also q-alg/9506012.[GO] and T. Ohtsuki, On �nite type 3-manifold invariants III: manifold weight systems, Topol-ogy 37-2 (1998). See also q-alg/9705004.[Go1] M. Goussarov, A new form of the Conway-Jones polynomial of oriented links, in Topology ofmanifolds and varieties (O. Viro, editor), Amer. Math. Soc., Providence 1994, 167{172.[Go2] , On n-equivalence of knots and invariants of �nite degree, in Topology of manifolds andvarieties (O. Viro, editor), Amer. Math. Soc., Providence 1994, 173{192.[Ha] N. Habegger, The topological IHX relation, Universit�e de Nantes preprint, May 1998.[Hu] M. Hutchings, Integration of singular braid invariants and graph cohomology, Harvard Universitypreprint, April 1995 (revised August 1997).[Ko1] M. Kontsevich, Vassiliev's knot invariants, Adv. in Sov. Math., 16(2) (1993) 137{150.[Ko2] , Feynman diagrams and low-dimensional topology, First European Congress of Mathemat-ics II 97{121, Birkh�auser Basel 1994.[Le] T. Q. T. Le, An invariant of integral homology 3-spheres which is universal for all �nite typeinvariants, in Solitons, geometry and topology: on the crossroad, (V. Buchstaber and S. Novikov,eds.) AMS Translations Series 2, Providence. See also q-alg/9601002.[LM1] and J. Murakami, Representation of the category of tangles by Kontsevich's iterated inte-gral, Comm. Math. Phys. 168 (1995) 535{562.[LM2] and , The universal Vassiliev-Kontsevich invariant for framed oriented links, Com-positio Math. 102 (1996), 42{64. See also hep-th/9401016.[LMO] , and T. Ohtsuki, On a universal quantum invariant of 3-manifolds, Topology 37-3(1998). See also q-alg/9512002.[Oh] T. Ohtsuki, Finite type invariants of integral homology 3-spheres, Jour. of Knot Theory and itsRami�cations 5(1) (1996) 101{115.[St1] T. Stanford, Finite type invariants of knots, links, and graphs, Topology 35-4 (1996).[St2] , Braid commutators and Vassiliev invariants, Paci�c Jour. of Math. 174-1 (1996).[Th] D. Thurston, Integral expressions for the Vassiliev knot invariants, Harvard University seniorthesis, April 1995.[Vas1] V. A. Vassiliev, Cohomology of knot spaces, Theory of Singularities and its Applications (Provi-dence) (V. I. Arnold, ed.), Amer. Math. Soc., Providence, 1990.[Vas2] , Complements of discriminants of smooth maps: topology and applications, Trans. of Math.Mono. 98, Amer. Math. Soc., Providence, 1992.[Wi] S. Willerton, A combinatorial half-integration from weight system to Vassiliev knot invariant, Jour.of Knot Theory and its Rami�cations, to appear.Institute of Mathematics, The Hebrew University, Giv'at-Ram, Jerusalem 91904, IsraelE-mail address : drorbn@math.huji.ac.il


