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THE KASHIWARA-VERGNE CONJECTURE AND DRINFELD’S
ASSOCIATORS

ANTON ALEKSEEV AND CHARLES TOROSSIAN

ABSTRACT. The Kashiwara-Vergne (KV) conjecture is a property of the Campbell-

Hausdorff series put forward in 1978, in [13]. It has been settled in the positive

by E. Meinrenken and the first author in 2006, in [2]. In this paper, we study

the uniqueness issuc for the KV problem. To this end, we introduce a family of

infinite dimensional groups KV,,, and an extension KV2 of the group KVa. We sz]J; Ilé&

S‘o }bo@) show that the group l’\‘\‘_; contains the Grothendieck-Teichmiiller group GRT /_'S

as a subgroup, and that it acts freely and transitively on the sct of solutions of R A

W\Vfl’ Ll‘ 'n\ Ll]!M the KV problem Sol( )ﬁ'). Furthermore, we prove that So](ﬁ;) is isomorphic ol
ﬁ.’r OF IID er, to a dircet product of a line ¥ (¥ being a field of characteristic zero) and the

5 ne r set of solutions of the pentagon cquation with values in the group KVa. The r_ 7
U © latter contains the set of Drinfeld’s associators as a subset. As a by-product of & &Tvﬂﬂy\
QL/W our construction, we obtain a new proof of the Kashiwara-Vergne conjecture \}

Skf‘/\dmj based on the Drinfeld’s theorem on existence of associators,

1. INTRODUCTION

The Kashiwara-Vergne (KV) conjecture is a property of the Campbell-Hausdorff
series which was put forward in [13]. The KV conjecture has many implications in
Lie theory and harmonic analysis. Let g be a finite dimensional Lie algebra over
a field of characteristic zero. The KV conjecture implies the Duflo theorem [8] on
the isomorphism between the center of the universal enveloping algebra Ug and
the ring of invariant polynomials (Sg)?. Another corollary of the KV conjecture
is a ring isomorphism in cohomology H(g,Ug) = H(g,Sg) (proved by Shoikhet
[20] and by Pevzner-Torossian [17]) for the enveloping and symmetric algebras

0802.4300vl [math.QA] 28 Feb 2008

- . 4 o 5 %
o - viewed as g-modules with respect to the adjoint action. For K R. another
x application of the KV conjecture is the extension of the Duflo theorem to germs of
:_'-‘3 invariant distributions on the Lie algebra g and on the corresponding Lie group &

(see Proposition 4.1 and Proposition 4.2 in [13] proved in [4] and [5]).

The KV conjecture was established for solvable Lie algebras by Kashiwara and
Vergne in [13], for g = sl(2,R) by Rouviére in [19], and for quadratic Lie algebras
(that is, Lie algebras equipped with an invariant nondegenerate symmetric bilinear
form, e.g. the Killing form for g semisimple) by Vergne [22]. The general case has
been settled by Meinrenken and the first author in [2] based on the previous work of
the second author [21] and on the Kontsevich deformation quantization theory [14].

In this paper, we establish a relation between the KV conjecture and the theory
of Drinfeld’s associators developed in [7]. To this end, we introduce a family of
infinite dimensional groups KV,,,n = 2,3,..., and an extension ﬁz of the group
KV,. We show that the set of solutions of the KV conjecture S()l(ﬁ) carries a free
and transitive action of the group KV, which contains the Drinfeld’s Grothendieck-
Teichmiiller group GRT as a subgroup. Furlhormort‘. the set Sol(ﬁ) is isomorphic

Lf‘ll/uc'fvft} imvolerd arg
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to a direct product of a line K and the set of solutions of the pentagon equation with Sbg 1S q'L O"OL
values in the group KV3. We make use of an involution 7 acting on soluti/ogs of the /ﬂ\l. O//. - ,\1 {<V
KV conjecture to select symmetric solutions of the KV problem, Sol” (KV). The (?f) _:
set Sol"(lf\V) is isomorphic to a direct product of a line and the set of associators \/\/ qr} [& _(J 0
(joint solutions of the pentagon, hexagon and inversion equations of [7]) with values

in the group KV3. The latter contains the set of Drinfeld’s associators as a subset. N Lo\,r}’ l k\/

In summary, we solve the uniqueness issue for the KV problem in terms of © Fal’
associators with values in the group KV3. As a by-product, we obtain a new proof of T G_Z
the KV conjecture. Indeed, by Drinfeld’s theorem, the set of Drinfeld’s associators
in non empty. Hence, so is the set of associators with values in the group KVj, b
and the set of symmetric solutions of the KV conjecture S()]’(ﬁ‘;). This new proof heas
is based on the theory of associators rather than on the deformation quantization J
machine.

An outstanding question which we were not able to resolve is whether or not
the symmetry group of the KV problem, ﬁg is isomorphic to a direct product of
a line and the Grothendieck-Teichmiiller group GRT. A numerical experiment of
L. Albert and the second author shows that the corresponding graded Lie algebras
coincide up to degree 16! If correct, the isomorphism KVa = K x GRT would imply )
that all solutions of the KV conjecture are symmetric, and that all associators with
values in the group KV are Drinfeld’s associators. rj

Below we explain raison d’étre of the link between the Kashiwara-Vergne and

ﬂ'l'ikx associator theories. One possible formulation of the KV problem is as follows:

fpk'lﬂ find an automorphism F' of the (degree completion of the) free Lie algebra with
generators = and y such that F'—
(1) F:2+yw chz,y),
where ch(z,y) =z +y + ,l_z[.r y] + ... is the Campbell-HausdorfT series. The auto-

morphism /' should satisfy several other properties which we omit here. Consider
a free Lie algebra with three generators z,y, z and define the automorphism F''+?
which is equal to I when acting on generators x and y and which preserves the
generator z. Similarly, define F'?? acting on generators y and z and preserving .
Furthermore, define F''?? acting on z+y and z, and F*** acting on z and y+ z (for
a precise definition see Section 3). The main property of the Campbell-Hausdorff
series is the associativity,

ch(z,ch(y, 2)) = ch(ch(z,y), 2).
We use this property to establish the following formula:
FY2F123(p 4 y 4 2) FY2(ch(z + y, 2))
ch(ch(z,y),2)
= ch(x,ch(y, 2))
F23(ch(z,y + 2))
F23FLB(x 4y 4 2).
Hence, the combination

{(2) P = (1,423:1) 1(],-1.2) 142,301,283

has the property ®(z +y+z) = 2 +y+ 2 which is one of the defining properties of the
group KV3. Furthermore, as an easy consequence of (1) and (2), the antomorphism

Sodd T rad bt oag M s A arrovsvdut) F
Dt Bists an associater to 0
UV\%I#L‘J” 2

F:z+yw— ch(zx,y),
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First formulate this as a precise conjecture
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P satisfies the pentagon equation
(3) 4,1.2.34,1‘23.-1@2.3.-! o ¢l2.3.4¢l.2.34_

Equation (3) is an algebraic presentation of two sequences of parenthesis redistribu-
tions in a product of four objects (a standard example is a tensor product in tensor
categories): the left hand side corresponds to a passage ((12)3)4 — (1(23))4 —
1((23)4) — (1(2(34)). while the right hand side to ((12)3)4 — ((12)(34)) —
1(2(34)). The pentagon equation is the most important element of the Drinfeld’s
theory of associators. Our main technical result shows that solutions of equation (3)
with values in the group KV3 admit an almost unique decomposition of the form
(2). and the corresponding automorphism F is automatically a solution of the KV
problem (and, in particular, has the property (1)).

An important object of the Kashiwara-Vergne theory is the Duflo function J'/?
which corrects the symmetrization map sym : Sg — Ug so as it restricts to a ring
isomorphism on adg-invariants. It is more convenient to discuss the logarithm of
the Duflo function,
> B

Rk

k.‘t
k! #
2kk.

6..1/2 =" :/2)

(4) f@) = %ln( _ :

k

where By are Bernoulli numbers. The function f(z) is even, and it is known that
any function f(z) = f(a) + h(z) with h(x) odd still defines a ring isomorphism
between Z(Ug) and (Sg)? (in the category of Lie algebras, all these isomorphisms
coincide with the Duflo isomorphism). We show that the Drinfeld’s generators
oak+1, k=1,2,... of the Grothendieck—’l‘eichm'/xi\l]er Lie algebra grt define flows on
the set of solutions of the KV conjecture Sol(KV), and on the odd parts of Duflo
functions such that (o941 - h)(x) = —22**'. Hence, all odd formal power series
(the linear term of the Duflo function is not well defined) h(z) can be reached by
the action of the group GRT on the symmetric Duflo function (4). This action
coincides with the one described in [15] (see Theorem 7).

The plan of the paper is as follows: in Section 2 we introduce a Hochschild-type
cohomology theory for free Lie algebras, compute the cohomology in low degrees
(Theorem 2.1), and discuss the associativity property of the Campbell-Hausdorff
series. In Section 3 we study derivations of free Lie algebras. Again, we define a
Hochschild-type cohomology theory, and compute cohomology in low degrees (The-
orem 3.1). In Section 4 we introduce a family of Kashiwara-Vergne Lie algebras to,,
and the Lie algel)ra {{)2. and show that the Grothendieck-Teichmiiller Lie algebra
grt injects into Bvy (Theorem 4.1). In Section 5 we give a new formulation of the
Kashiwara-Vergne conjecture, and show that it is equivalent to the original state-
ment of [13] (Theorem 5.2). In Section 6 we discuss properties of Duflo functions
and show that they can acquire arbitrary odd parts. In Section 7 we establish a link
between solutions of the KV problem and solutions of the pentagon equation with
values in the group KV3 (Theorem 7.1). In Section 8 we discuss an involution 7
on the set of solutions of the KV problem, and derive the hexagon equations using
this involution. Finally, in Section 9 we introduce associators with values in the
group K'Vi, compare them to Drinfeld’s associators, and give a new proof of the
KV conjecture (Theorem 9.2).
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2. FREE LIE ALGEBRAS

2.1. Lie algebras lie, and the Campbell-Hausdorff series. Let K be a field
of characteristic zero, and let lie,, = lie(xy, ..., z,) be the degree completion of the
free Lie algebra over K with generators z,,...,z,. It is a graded Lie algebra

- <]
liea = [ tie* @1, s Za);
k=1

where lie*(2y,...,2,) is spanned by Lie words consisting of k letters. In case of
n = 1,2,3 we shall often denote the generators by =, y, z.

The universal enveloping algebra of lie,, is the degree completion of the free
associative algebra with generators zy,...,z,, U(lie,) = Ass,. Every element
a € Ass, has a unique decomposition

n
(5) a=ag+ Y (da)zy,
k=1
where ay € K and (9ga) € Ass,,.
The Campbell-Hausdorff series is an element of Ass; defined by formula ch(z, y) =
In(e™e¥), where e™ = 327 (¥ /k! and In(1 — @) = = Y5 | a*/k. By Dynkin’s the-
orem [9], ch(z,y) € lies and

chiz,y) =z +y + %[r,y] +eeny

where ... stands for a series in multiple Lie brackets in z and y. The Campbell-
HausdorfT series satisfies the associativity property in lies.

(6) ch(z,ch(y, z)) = ch(ch(z,y), 2).

One can rescale the Lie bracket of liez by posing [-, -]y = s[-, ] for s € K to obtain
a rescaled Campbell-Hausdorff series,
s
chy(z,y) =z +y+ 5[3:"'/] iy
where elements of lie*(x,y) get a extra factor of s*!. Note that ch,(z,y) =
s 'eh(sz, sy) and chg(x,y) = x +y. The rescaled Campbell-Hausdorfl series
chy(z,y) satisfies the associativity equation,

chy(z, chy(y, z)) s ch(sa, ch(sy, sz))
s ch(ch(sz, sy), s2)

chy(chy(z,y), 2).
Remark 2.1. Let g be a finite dimensional Lie algebra over K. Then. every element

a € lie, defines a formal power series ag on g" with values in g. For instance, the
Campbell-Hausdorff series ch € lies defines a formal power series chg on g* with

nnn
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rational coefficients. For every finite dimensional Lie algebra g this formal power
series has a finite convergence radius.

2.2. The vector space tr,. For every n we define a graded vector space (r, as a
quotient
tr, = Ass} /((ab - ba);a.b € Ass,).

Here Ass) = [[eo, Ass®(21,...,2,), and ((ab — ba);a,b € Ass,) is the subspace
of Ass; spanned by commutators. Product of Ass, does not descend to tr, which
only has a structure of a graded vector space. We shall denote by tr: Ass, — lx,
the natural projection. By definition, we have tr(ab) = tr(ba) for all a,b € Ass,,
imitating the defining property of trace.

Example 2.1. The space lr; is isomorphic to the space of formal power series in
one variable without constant term, tr; = 2K[[z]]. This isomorphism is given by
the following formula,

(=) = Z Srak v ka tr(z*).
k=1 k=1

In general, graded components ttf of the space tr, are spanned by words of
length & modulo cyclic permutations.
Ezample 2.2. For n = 2, tc} is spanned by tr(x) and tr(y), te3 is spanned by
tr(z?), tr(y?) and tr(zy) = tr(yx), ] is spanned by tr(z®). tr(z®y). tr(zy®) and
tr(y®). trd is spanned by tr(z?), tr(z%y), tr(2?y?), tr(zyay), tr(zy®) and tr(y*) ete.
Remark 2.2. Let g be a finite dimensional Lie algebra over K. p: g — End(V)
be a finite dimensional representation of g, and a = Z:i, ay € tr, an element of
tr,,. We define p(a) as a formal power series on g" such that p(te(z;, ...2;,)) =
Try(p(xi,) ... pla;, ) for monomials, and this definition extends by linearity to all
elements of tr,,.

2.3. Cohomology problems in li¢, and tr,. For all n — 1,2, ... we define an
operator 4 : lie, — lie, 4y by formula

(0f)(@1,...xn41) = flaz, 23, .. Tni1)
(7) o Y (=D (@@ A Tigry e Taga)
+ (=)™ f(z1,...,T0).
It is easy to see that 6% = 0.
Ezxzample 2.3. For n = 1 and [ = ax € lie; = K we have
(0f)(z,y) = f(z) = flz+y) + fy) = 0.
For n = 2 we get
Of)x,y,2) = fly.2) = flw+y,2) + fla,y + 2) = fla,y).

One can also use equation (7) to define a differential on the family for vector
spaces lt,. By abuse of notations. we denote it by the same letter, 8 : tr,, — tr, .

Ezample 2.4. For n = 1, we have for f(z) = tr(z*)
(0f)(a,y) = tr(x® +y* — (x +y)*).

Note that the right hand side vanishes for & = 1 and that it is non-vanishing for all
other k=2,3....

Alekseev - Torossian Page 6
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The following theorem gives the cohomology of & in degrees n — 1,2.

Theorem 2.1.

'ﬂ'\\’_s ,_5 onl
H(tie, 5) ker (8 : liey — liea) = liey , i
H'(t,6) - k(-r(r)':lnl -ujw& t|r(;r). AW 5"0"”‘?) DU’\G/A’}@
H?(lie,d) = [K[z,9]],
H3(t,8) = 0. ‘77 (/Jl\a l:)/_a\(_{a'f‘ [%Lﬂl
Proof. The first statement is obvious since lie; = Kz and é(z) = z2— (z+y) +y = 0. I,"' \'j VE!{ 'ﬂ,\(’ J

The second statement follows from the calculation of Example 2.4.

& St b ; . 1 o & goluts ooree 2 "
For computing the second cohomology, let f be a solution of degree n > 2 of ‘/,,D OF ) j ,m,gg

equation
(8) f,2) = f(x+9,2) + @,y +2) = f(a,y) = 0. in 7‘\,\/0
By putting x v sz, y +— x, 2 v+ 2 we obtain <

f(sz,z) + f((1 + 8)x,z) — f(sz,x + 2) — f(x,2) = 0. vwlabpc&'
In a similar fashion, putting = + z,y v 2, 2 -+ sz yields

f(z,2) + f(x +2,82) — f(x,(1 + 8)z) — f(s2,2) =0.
Subtracting the first equation from the second one and differentiating the result in
s gives
nf(z,z) = %\_(f((l + 8)x, z) + f(z, (1 + 8)2))|s=0

= 3 (f(sz, 2+ 2) + fx + 2,82) — f(sz,x) — f(s2,2))|s=o0-

First, we solve equation (9) for f € lieo. In this case, f(sz,x) = f(s2z,2) = 0 and
we obtain

9)

f(z,2) = ad?7 ) (azx + 82)

for some a, 3 € K. For n = 2, this yields f(z, 2) = (3 — a)[z, z]. Tt is easy to check
that this is a solution of equation (8).

For n > 3, consider equation (8) and first put y — —z to get f(z,z) = —f(a —
z,z), and then put y = —z to obtain f(x,z) = —f(—x,x + z). Hence,

f(z,2)=(a—B)ad? 2= (a—-PB)ad? 'z

which implies f(x,2) = 0. Finally, for n = 1 we put f(x,y) = ax + 3y to obtain
8f = ax — 3z. In conclusion, df = 0 implies that f is of degree two. and f(z,y) =
alz,y] for a € K.

For f € try equation (9) gives

fla,z) = tr ((azx + B2)(x + 2)" ! —az™ — 32") ,

for some a, # € K. For n = 1, it implies f(z,z) = 0. For n = 2, we get
B . ;
f(z,2) = (a+ @) tr(xz) = — a‘; a(tr(z?)).
For n > 3, we have
f=B-atry(@+y)" '+ y+2)" = (@+y+2)" -y ).
The coefficient in front of tr(y" 2zz) in this expression is equal to (3 — a)(n — 2),

and it vanishes if and only if 3 = a. In this case, f(x,2) = —ad(tr(z")). Hence,
4 f = 0 implies the existence of g € tr; such that dg = f, and the second cohomology

L H?(tr, ) vanishes. 4

Alekseev - Torossian Page 7
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Remark 2.3. In the proof of Theorem 2.1 we have shown that ker (d : lie; —

lie3) = K[z,y]. That is, the only solution of equation (8) is f(z,y) = alz,y|.
Equation (8) has been previously considered in the proof of Proposition 5.7 in [7].
There it is stated that equation (8) has no nontrivial symmetric, f(z,y) = f(y, x).

solutions in lies.

2.4. Applications. In this section we collect two simple applications of the coho-
mology computations of Section 2.3.

Proposition 2.1. Let s € K and let x € lies be a Lie series of the form x(zx,y)
z+y+5eyl+.... where ... stand for a series in multibrackets. Assume that x
is associative, that is

x(z, x(y, 2)) = x(x(z,¥),2) € lieg .

Then, x coincides with the rescaled Campbell-Hausdorff series, x(x,y) = che(z,y).

Proof. The Lie series x and chy coincide up to degree 2. Assume that they coincide
up to degree n — 1, and let y = Z:_x Xn With x,(z,y) a Lie polynomial of degree
n. The associativity equation implies the following equation for x,,:

Xn(®,y +2) + Xn(¥:2) = Xn(@,4) = Xz +9.2) = FOa(@,9)s. ... Xn1(z, %)),
where F is a certain (nonlinear) function of the lower degree terms. By the induction
hypothesis, the lower degree terms of x and ch, coincide. And the equation for x,,

has a unique solution since the only solution of the corresponding homogeneous
equation dx, = 0 for n > 3 is x,, = 0. Hence, x,, = (chy), and x = ch. O

Similar to the differential §, we introduce another differential 5 acting on lie,
and tv,,:

@1, ZTny1) = flx2,23,...,%Tn41)
(e + T (=) (@, (i Tig), oy Tni1)
(=1 @y Tn).

Again, 6% = 0, but in contrast to 4, & does not preserve the degree. In the following
proposition we compute the cohomology of 4 for n = 1, 2.

Proposition 2.2.

H (lie, 3) 0.
H'(tx, 8) ker (6 : tr; — tro) 2 K tr(z),
H?(lie,6) = 0,
H(te, 6) 0.

Proof. For H'(lie, 5) we consider d(x) = a+y—ch(x,y) # 0 which implies H (lie, §)
ker(d : lie, — liea) = 0. To compute H'(tr,d), observe that 3(lr(r)) = tr(x +y —
ch(z,y)) = 0 (here we used that tr(a) = 0 for all a € lie,, of degree greater or equal
to two), and dtr(z*) = tr(z*¥) +--- £ 0 for k > 2 (here ... stand for the terms of
degree greater than k).

In order to compute the second cohomology, let f = 3%, f,. where f, is
homogeneous of degree n. and fi. # 0. Then, 3f = 8fx + terms of degree > k, and
l;f = 0 implies f; = 0.

First, consider f € lie. In this case, dfx = 0 implies fi = 0 for all k except
k = 2. For k = 2, we have fa(x,y) = 5[z, y] for some a € K. Define g = f+a(dz)

Alekseev - Torossian Page 8
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[+ alz +y—ch(z,y)). We have dg = of + ad?z = 0, and go(x,y) = 0. Hence,
g=0and f = —a(z +y — ch(z,y)) = §(—ax).

For f € try, equation df; = 0 implies fi = ohy for some hy € try. Consider
g = [ — dhy. It satisfies dg = 0, and g = 300, .| gi. In this way, we inductively

construct h € tey such that g = h. )

Remark 2.4. For every s € K one can introduce a differential 3, by replacing
ch(z, y) with chs(z, y) in formula (10). We have §; — 4 and & — . Proposition 2.2
applies to all s # 0. Note that H'(tr,5.) = K tr(z) and H2(tr,,) = 0 for all s € K
(including s = 0).

3. DERIVATIONS OF FREE LIE ALGEBRAS

3.1. Tangential and special derivations. We shall denote by der,, the Lie al-
gebra of derivations of lic,. An element u € der,, is completely determined by its
values on the generators, u(x;),...,u(z,) € le,. The Lie algebra der, carries a
grading induced by the one of lie,.

Definition 3.1. A derivation u € der,, is called tangential if there exist a; € lie,, 1 =
1,...,n such that u(x;) = [, a;].

Another way to define tangential derivations is as follows: for each i = 1,....,n
there exists an inner derivation u; such that (u — u;)(x;) = 0. We denote the
subspace of tangential derivations by Wer,, C der,,.

Remark 3.1. Let p; : lie, — K be a projection which assigns to an element
a = ZL[ A + ..., where ... stand for multibrackets, the coefficient A\, € K.
Elements of tder,, are in one-to-one correspondence with n-tuples of elements of lie,,,
(ay,...,ay,). which satisfy the condition pi(ax) = 0 for all k. Indeed, the kernel
of the operator ad,, : a v [z, a] is exactly Kai. Hence, an n-tuple (ay,...,a,)
defines a vanishing derivation u(xx) = [xg, ax] = 0 if and only if ax € Kay for all
k. By abuse of notations, we shall often write u = (ay, ..., a,).

Proposition 3.1. Tangential derivations form a Lie subalgebra of dex,,.
Proof. Let u = (ay,...,a,) and v = (by,..., by,). We have

[w,e](zx) = w(fzp, b)) = v([op, ax])

[k, ar), be) + [z, w(by)] — [[e, b, a] — (@, v(ag))

[, w(bic) = vlak) + [ax, bi]]

which shows [u, v] € tder,. 0O

One can transport the Lie bracket of tder,, to the set of n-tuples (ay,...,a,)
which satisfy the condition pg(ay) = 0. Indeed, put the kth component of the new
n-tuple equal to u(by) — v(ay) + [ay.bi]. This expression does not contain linear
terms, and in particular it is in the kernel of py.

Definition 3.2. A derivation u € Wer, is called special if u(a) = 0 forz = 37 | =,

We shall denote the space of special derivations of [lie,, by sder,. It is obvious
that sder, C der, is a Lie subalgebra. Indeed, for u,v € sder,, we have [u, v](z) =
u(v(z)) = v(u(z)) = 0 and, hence, [u,v] € sder,,.

Remark 3.2. Thara [11] calls elements of sdet,, normalized special derivations.

Alekseev - Torossian Page 9
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Exzample 3.1. Consider r = (y,0) € Werz. By definition, r(z) = [x,y].r(y) = 0.
Note that r(z +y) = [z,y] # 0 and r € sderz. Consider another element t = (y, z) €
tders. We have #(z) = [x,y],t(y) = [y, 2] and t(z +y) = [2,y] + [y, 2] = 0. Hence,
t € sdery.

3.2. Simplicial and coproduct maps. We shall need a number of Lie algebra
homomorphisms mapping tder,, | to tder,. First, observe that the permutation
group S, acts on lie,, by Lie algebra automorphisms. For o € S,,. we have a +
a” = a(z,(1), .- ., Ta(n))- The induced action on tder,, is given by formula,
u=(a1,...,an) = u’ = (ﬂa—l(l)(l‘a(l)- . -qu(u)), -~-vao“(n)(xa(l)1~' "Ia(n)))-
Ezample 3.2. For u = (a(z,y),b(x,y)) € Wera we have u*' = (b(y, x), a(y, z)).
where o = (21) is the nontrivial element of S;. In the same fashion, for u =
(0(1‘, y) z)’ b(IY y? z)‘ C(z? yf z)) e la‘ts we have uan l'z - (b(‘z! x! y)? c(zi m’ y)’ a(z7 I? y))'
We define simplicial maps by the following property. For u = (ay,...,a,-1) €
e,y define u' "1 = (ay,...,a,-1,0) € Wer,. It is clear that the map
u -+ u'?" =1 s a Lie algebra homomorphism. We obtain other simplicial maps

by composing with the action of S,, on der,. Simplicial maps restrict to special
derivations. Indeed, for u € sdev,; and = = 3" | x; we compute

n—1

ul.2...,.n—l(z) - Z[Iivai] —0
i=1
which implies u'2-"! € sder,,.
Ezample 3.3. Foru — (a(z,y),b(zx,y)) € erz we have u'? = (a(x,y), b(x,y),0) €

ery and w?? = (0,a(y, z),b(y. 2)). For instance. for r = (y,0) we obtain r"? =
(®.0,0),7*% = (0,2,0),7'* = (2,0,0).

Proposition 3.2. The element r = (y.0) € tdery satisfies the classical Yang-Barter
equation,
(12, 719) 4 (12, 123] 4 [13, 23] = 0.

Proof. We compute,

[rl'2y ’.1.3] - [(y, 01 0)| (2, 0, 0)] - ([yv z]! Oa 0),

("% = [(4,0,0), (0, 2,0)] = ~([y, 2],0,0),

[r*®,#23] = [(2,0,0), (0, 2,0)] = 0.
Adding these expressions gives zero, as required. (]
Next, consider ¢ = (y,z) € sdeva. By composing various simplicial maps we

obtain n(n — 1)/2 elements of t*/ = /' € tder,, with non-vanishing components x;
at the jth place and z; at the ith place.

Proposition 3.3. Elements t') € sder,, span a Lie subalgebra isomorphic to the
quotient of the free Lie algebra with n(n—1)/2 generators by the following relations,

(11) [, % =0
Jor k.l #1,5, and
(12) [tl.j + ti.k’ tj.k] =0

Sor all triples of distinct indices i, j, k.
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10 ANTON ALEKSEEV AND CHARLES TOROSSIAN

Remark 3.3. We denote by , the Lie algebra defined by relations (11) and (1 ")
Notethate =Y, <; "7 isacentral element of t,,. Indeed, [t q) =D ki, ,\‘_’[l Stk
t7*] = 0. Tt is known (see Section 5 of [7]) that

ty 2 by @ Ge(t!, ..., tn-1m),

where the free Lie algebra le(t"", ..., "~ ') is an ideal in t, and {,_; C t, is
a (umplmn(‘nlm\ Lie subalgebra spanned by ¢/ with i,j < n . In particular,
tp = Kt"? is an abelian Lie algebra with one generator, and {3 = to @ lie(t?, 1>).
In fact, ad, 2 is an inner derivation of lie(t", #:3),

[t"2,a] = [t'? = c,a] = =[t'? + 33, 4],
and t3 = Ke @ lie(t1 4, 129).

Proof. First, we verily the relations (11) and (12). The first one is obvious since
the derivations ¢ and t*! act on different generators of lie,,. For the second one,
we choose n = 3 and compute [t'? + 13 23]

[¢2, 23] = [(y, 2, 0), (0, 2, 9)] = (=[v, 2], [z, 2], [y, ]),

[t12,823] = [(2,0,2),(0, 2,9)] = (=[z, ], [z, 7], [z, 9]).
Adding these expressions gives zero, as required. We obtain the relation (12) for
other values of ¢, 7, k by applying the S, action to replace 1,2, 3 by i,j, k. Hence,
the expressions t"7 define a Lie algebra homomorphism from t, to sder,. We
prove that it is injective by induction. Clearly, the map t; = Kt'? — sdery is
injective. Assume that the Lie homomorphism t, ; — ter, ; is injective. Let
a € t,, a a' + a", where @' € t,_1 and a” € lie(t"",..., "y We de-
note by A’ and A” their images in sder,. Observe that A'(x,) = 0 since A’
is a derivation acting only on generators zy,...,: r,-1. It is easy to check that
A'(zq) = [xnya" (2150433 rn-1)], where a”(zy,. ..,z v, 1) is obtained by replacing
the generators t*" by x; in a” (", ..., "1y Assuming A = A + A" = 0, we
have A(z,) = 0 which implies A”(z,) = 0 and a” = 0. Then, a = a’ € t,_, and
A = 0 implies a = 0 by the induction hypothesis. (]

Proposition 3.4. The element ¢ Z,<J t"7 belongs to the center of sder,,.
Proof. First, note that ¢(x;) ZJ#’{J‘,,J'J] [xi,z] for = z"l':] xj. Hence,

¢ is an inner derivation, and for any a € lie, we have c¢(a) [a,x]. Let u
(ay,...,ax) € sder,, and compute the kth component of the bracket [c, u]:
clag) — w(dX; 2 i) + Z,#_,\_[Jr,.uk] lax, 2] + u(ay) + Z-;‘.k[""’"k]
lag, 2] + [z, ak] + 3, 2p [ @)
lax, =] + [z, ax]

Here we have used that u(z) = 0 for u € sder,,. O

Another family of Lie algebra homomorphisms tder,, | — tder,, is given by co-

olau,j net M&bﬂ/ﬁ

product maps. For u A)(,“l ..... ay—1) € Wer,; we define K\J/ . (& ) [ a%db/j
ul2:30n (ay(zy + ®a, 23, ...,4 Ba); : | /(5 c//w
ay(xy + 22, x5 .
agx(x) + xa,23,...,1 %) Jq’ ) J/&&} "‘0(]’ P
(.1.,,' ll(.rl d 22, L3, ... 41 Ty ))-

lo,X @}»") '@
(UC)IDP-)@ / Z/)(O 0)-- ?'C’))_)

L, low nof 05 2 Py
0%0/77% [ - .
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Other coproduct maps are obtained by using the action of the permutation groups
on ter, ; and on er,,.

Ezample 3.4. For n = 2 and u = (a(z,y),b(z,y)) we have u'*? = (a(z 1
y.2),a(z +y,2),b(x +y,2)) and u'? = (a(w,y + 2), bz, y + 2), bz, y + 2)).

Coproduct maps ter,, ; — ter, are Lie algebra homomorphisms. Let v =
(a,b) € tdery and compute u'?3(z+y) = [z +y, a(z+y, 2)] and u'?3(2) = [z, b(x +
y, z)]. Hence, for any f € lies we obtain «'?3(f(z + y,2)) = (u(f))(x +y,2). For
u=(ay,by),v = (az,b2) € Wery we compute [u'??, ¢'23] = (¢, ¢, ¢3) where

a=c = u?ag(x+y,z2) v ar(z +y,2)) + [a(x+y,2),a(x+y,2))
= (u(az) —v(ar) + [a1, a2]) (= + 9, 2),
c3 u'3(by(x + y, 2)) — 023 (by (@ + 9, 2)) + [ba@ + y, 2), ba(x + 9, 2)]

(u(ba) = v(br) + [br, bo]) (2 + v, 2).

Hence, [u'?? 2'23] = [u,v]'2®. Coproduct maps restrict to Lie subalgebras of
special derivations. For u € sdev,, | and x = 2:..—:1 x; we compute

w3 () = [y + 22, a1 (21 + T2y ooy )] F oo+ [Tnyan_1 (21 + 22, ..., 20)] =0
which implies «!23-" ¢ sder,,.

Ezample 3.5. For r = (y,0) € tery we have r'23 = (2,2,0) = r'% + 23 and
ro=t = (y+2,0,0) = r* 4+ r>7. Similarly, for ¢ = (y,r) € (derz we have t'7 =
i 0,0 12 4 p!3. Similarly, for ¢ o] have ¢'%3
(z,2,2+y) =13 +123 and t1'B = (y + 2,2, 2) =12 413,

Let u = (ay.by) € sders and v = (az,by) € Wery. Then, [ul?,¢123] = 0. Indeed,
ote that u"? acts by zero on lie(x +y, z) and ©'>? acts as an inner derivation with
generator as(x + y, z) on lie(x, y). We compute

[u"?, 012 (2) ul?([z, az(x + g, 2)]) — v"*3([x, a1z, y)])
([ a1 (=, 9)], az(x + y, 2)] = ([, a1 (2, y)] az(z + y, 2)] =0,

and similarly [u"?,©'%3](y) = 0. Finally, [u"?,v'2?](z) = u"?([2, ba(x +y, 2)]) = 0.
In general, for u € sdet,, v € et 41 we have [ul 2 pl2emntleantm]

nn

3.3. Cohomology. We define a differential d : tder,, — tder, .y by formula,
du= u2,3~.,..u+l = ul2 ..... (n—1)n T (_l)nul.2...“(n~l)n + (_1)n+lul‘2,.4.‘u.
Tt is easy to check that d squares to zero, d* = (.

Ezample 3.6. For u € Wera we get du = u?? — u'23 4 12 — 412, For u € Werz
we obtain du — u234 — 1234 | 1234 _ 1231 | 123

We shall compute the cohomology groups
H™(tder,d) = ker(d : tder,, — tder,+y)/im(d : der,,—y — Wer,,)
for n = 2,3.

Theorem 3.1.

H?(ter, d) ker(d : tdery — tderg) = Kr & Kt,
H3(er,d) = KI[(0,[z,2],0)],

where r = (y,0),t = (y,x).

Alekseev - Torossian Page 12
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12 ANTON ALEKSEEV AND CHARLES TOROSSIAN

Proof. Since tder; = 0, we have H?(tder,d) = ker(d : tder; — (ders). Let u =
(a,b) € Wera, and consider du = u*? — «'?3 + «'** — 42, Equation du = 0 reads

— alz+y,z2) + alz,y+z) — a(z,y) = 0,
a(y,z) - a(z+y.z) + blx,yt+z) — blx.y) = 0,
bly,z) — blz+y,z) + blzy+z) = 0.

Put = = 0 in the first equation to get a(y,z) = a(0,y + z) — a(0,y) = az. In the
same way, put 2 = 0 in the third equation to obtain b(z, y) = b(z +y,0)—b(y) = Bx.
All three equations are satisfied by « = (ay, 3z) = (a — 8)r + jt for all o, 3 € K.
Hence, ker(d : tdery — tders) = Kr & Kt

In order to compute H?(ter,d) we put « = (a,b,c) € Wery and write du =
w234 1234 4 1284 _ 1234 4 123 Equation du = 0 yields

—a(z +y,z,w) +alz,y+z,w) —alz,y,z+w) +a(x,y,z)
a(y,z,w) —a(z+y zw) +blz,y+z,w) —blz,y,z+w) +blx,y, 2)
b(y, z,w) =bx+y,z,w) +blz,y+z,w) —c(z,yz+w) +e(z,yz)
c(y,z,w) —clzx+y,zw) +elr,y+z,w) —clz,yz+w)

o
LeLeL

Make a substitution z +— z,y — —x, 2 v x + y, w + z in the first equation to get
a(z,y,2) = alz, =z, 2z +y + 2) —alz,—z,x + y) + a(0,z + y, 2).

Let f(z,y) = —a(z, =2,z +y) and k(z,y) = a(0,z,y) — f(z, y) to get the following
expression for a,

a(z,y,z) = f(z,y) — flx,y+2) + fx +y,2) + k(z +y,2).
In the same fashion, putting  + y,y — 2 + w,2 — —w,w + w in the forth
equation gives
c(y, z,w) = ey + 2 + w, —w,w) — ¢(z + w, —w,w) + ¢y, z + w,0).
By letting g(z,w) = —c(z + w, —w, w) and l(z,w) = ¢(z,w,0) + g(z,w) we obtain
c(y, z,w) = —g(y,z + w) + gly + 2,w) — g(z,w) + Uy, z + w).

Consider @ = (@,b,¢) = u + d(f,g). It satisfies d = 0 and it has a(z,y,2) =
k(x+y,2)and &(z,y, 2) = l(x, y+z). The first equation (for @) implies k(z+y, z) =
k(x + y, z +w) which forces k = 0 (since a does not contain terms linear in z). In
the same way, the forth equation yields I(z + y, 2 + w) = l(y, z + w) which implies

= 0. Hence, @ = (0,b,0). Denote h(z,y) = 5(x,0, y) and first put y = 0 in the
third equation to get l;(:z:,z,w) = h(x,z +w) — h(z, z), then put z = 0 to obtain
l;(::, y,w) = h(z + y,w) — h(y.w). These two equations imply

h(z,y) = bz, y +w) + h(z + y,w) = h(y,w) = 0,

and, by Theorem 2.1, h(z,y) = v[x,y] for some v € K. This implies b(x,y,z) =
Yy + 2] = Az, y) = [z, 2]. Tt is easy to check that @ = (0,7[z,2],0) verifies
da = 0. Finally, in degree two, im(d : tders — ery) is spanned by

d((l[l',y], ‘[3[11 y]) = (—d{y, Z]s (Q = ﬂ)[ZyI], _@[Z, y}),
and (0,7[z,2],0) € im(d : dery — Wers) for v # 0. (]
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bt

I~eocydy Jia,

an ideL \der
n The IV\OJW(L th,,

) le/nf’.

o

’]‘1“'; 4 e
\9|'nl<fnj aumbus”
|- COCJC'“‘

nam )
\\g"\/ ?,o

13

3.4. Cocycles in tr,. The action of der,, extends from [ie, to Ass,, and descends
to the graded vector space tr,,. For u € der,, and a € lr,, we denote this action by
u-act,.

Ezample 3.7. Let r = (y,0) € tdery, and a = tr(xy) € tro. We compute r - a
tr(r(z)y + xr(y)) = tr([z,y]y) = tr((zy — yz)y) = 0.

We shall be interested in 1-cocycles on the subalgebra tder,, with values in tr,,.
That is, we are looking for linear maps a : tder,, — tr,, such that

w-ofv) —v-alu) —affu,v]) =0
for all u,v € er,,.

Proposition 3.5. Forall k —1,..., n the map o : u = (ay,..., ay) +— tr(ag) is a
1-cocycle.

Proof. Note that o vanishes on all elements of degree greater or equal to two.

Hence, a([u,v]) = 0 for all u,v € Wer,,. Let v = (ay,..., a,) and v = (by,..., by).
Then, u-a(v) = u-tr(bg) = tr(u(bg)) = 0 since u(by) is of degree at least two, and
similarly v - a(u) = tr(v(ag)) = 0. 0
Proposition 3.6. The map div : u = (ay,.... ay) = Yopo, (@ (dray)) is a 1-
cocycle.

Proof. On the one hand, we get
u-div(v) — v - div(u) Z;:_] tr (u(zp (b)) — vizk(Irar)))
Yokoy tr((a, an](Onbr) + zrw(Orbi)
- [ak b (Orar) — wpv(dpar)).

=

On the other hand, we obtain,
div([u, v]) EZ;, tr(zk O (u(b) — v(ag) + [ag, by)))
S ko tr(@kd (w(E0  (Dibr)ay) r(z;"_,(n,uk)f,) b [ax, bi]))
= S tr(ze O (O (u(@ibi )i + (i) (s, 1))
- Z"_[(l‘((')Juk).Tj + ((')ju;..j[.rj‘u]]) + [ax, br]))
Sheo tr(@(w(drbi) — (Orbi)ar + 3o, (3ibi)zi (Fras)
v(Igay) + (Dpay )by Z;‘_l(”ﬂ‘k)-";(“k";) tag(Ieby) — br(Max)))
Z;:_l tr(xp (u(Oby) — (kb )ay — v(dpax)
t o (ag)br + ap (b)) — br(drar)))
u-div(v) — v - div(u).
proving the cocyele condition. Here we have used the definition of d operators (see
equation (5)) and the fact that ay Z""_l(('),nk).r_, and by = 31 (9:by ). O

The divergence cocycle transforms in a nice way under simplicial and coproduct

maps. For u = (ay,..., ay) € Wer, we have div(u!?-") = 3" tr(x;(dia;))
div(a)(zy, ..., a,). For div(u'?+"*1) we compute
div(u!2ently tr(zy(Nay(xy + 22, ...)) +z2(P0ay (x) + 22,...)))
+ T tr(zk(dkar-1(z1 + 22, ...)))

= tr({zy + z2)(ha ) () + 22,...)
+ Y ke Trsr(Orag)(xy +@2,...))
= (div(u))(x; + 22,23,...,1 Tyi1)-

Proposition 3.7. div(du) = §(div(u)).

A CCO'/G(in %O http://groupprops.wiki-site.com/index.php/1-cocycle for a group action

~_ j/ovtf’ (-COQC/L [S X f’m\/y P& ~)/4 Pfom

N 9louy & 'ILb A /440//%1 (jfam/ /,L 5,7/,
P(3h) = P(9)+9 Plh)

Ake. “Crossid homomorphin’ G acks

ol l«/(’\‘ll [)
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Proof. We compute,

div(du) = div(u®"+1) — div(e! 2ty 4o (<) (a2
= div(u)(za,...,2zn1) — div(u)(zy + x2, ..., Tpt1) + oin
+ (=) Hdiv(zy, ..., 2n)
S(div(u)).

4. KASHIWARA-VERGNE LIE ALGEBRAS

4.1. Definitions. In this section we introduce a family of subalgebras of sder,
called Kashiwara-Vergne Lie algebras.

Definition 4.1. The Kashiwara-Vergne Lie algebra tv, is a Lie subalgebra of
special derivations spanned by elements with vanishing divergence.

Note that bv,, is indeed a Lie subalgebra of sder,,. For two derivations u, v € tv,,
the cocycle property for divergence implies div([u, v]) = u - div(e) — v - div(u) = 0,
as required.

Ezxample 4.1. The element t = (y, x) € sder, is contained in ;. Indeed, we have
a(x,y) = y,b(x,y) = = and d,.a = d,b = 0 which implies div(t) = 0.

Simplicial and coproduct maps restrict to tv,, subalgebras. Indeed. for u € sder,
the condition div(u) = 0 implies div(u"?") = 0 and div(u!?3-"+1) = (.

Ezample 4.2. Sincet € tva, we have t12, 113,423 € bog and [t13,123] = ([y. 2], [2. 2], [z, ¥]) €
tog.

In the case of n = 2 we introduce an extension of to,,

foy i {u € sdery, div(u) € ker(d)}.

Recall that ker(d : tro — trz) = im(d : tv; — try). Hence, for u € ﬁag there exists
an element f € tr; such that div(u) = tr(f(z) = f(z +y) + f(y)). By Theorem 2.1,
such an element is unique if we choose it in the form f(z) = 3, fra®. By abuse
of notations we denote by f the map f :w+ f, and by fi the maps fi : u > fi.
_ The subspace tv, is a Lie subalgebra of sders. Indeed. for two derivations u,v €
tvs we compute div([u,v]) u - div(v) — v - div(u). We have div(v) of
tr(f(x) — f(z + y) + f(y)) with f € 2®K[[z]]. Note that u - tr(f(z + y)) = 0
since u(z +y) = 0 and u - tr(f(x)) = tr([z,alf'(z)) = te([zf'(x),a]) = O, where
u(x) = [, a]. Hence, u-div(v) = 0, and similarly v - div(z) = 0. In fact, we proved
[Y}z. ?Dz] C to,.

Proposition 4.1. Let u € E;J'z. Then, f(u) is odd, and Taylor coefficients fi k =
3,5,... are characters of tosy.

Proof. Let u € 632 with divergence div(u) = tr(f(z) — f(z + y) + f(y)). where
flx) = Z:_z fra®. Note Lhat}hc coefficient in front of tr(xy” ') in div(u) is equal
to —nf,. Since u = (a,b) € tvy, we have u(z + y) = [z,a] + [y, b] = 0. Consider
terms linear in z in both a and b. First, observe that b does not contain terms of
the form ad}' (x) for m > 1 since ady'" (z) ¢ im(ad,). In particular, this applies to
all m odd. Next, note that a does not contain terms of the form ady' () for m odd
since in this case [z, ad}’ (x)] ¢ im(ad, ). Hence, div(u) = tr(xd;a + yd,b) does not

15

contain terms of the form tr(xzy™) for m odd, anx‘l\ fi = 0 for all k = m + 1 even.

Finally, Taylor coefficients of f are characters of v, since they vanish on tv,, and

on [aag. ﬁig] C to,. (]
%5 Nl (n\& 1.2. The Grothendieck-Teichmiiller Lie algebra. Recall that the Grothendieck-
vi%s Pov Teichmiiller Lie algebra get was defined by Drinfeld 7] in the following way. It is
__Fi/"‘/-w ‘\1«& spanned by derivations (0, ) € tders which satisfy the following three relations
?(‘h net (13) Y(a,y) = —¥(y.2),
s oF SN
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\,JG;S Fov~ Leicnmutier Lie algebra gri was denned by Driniela [ in the [olnowing way. 1t is
Fo/"\ spanned by derivations (0, ") € tdery which satisfy the following three relations

/:):
?f}' ne (13) v, y) Uy, ),
p
EW\,/MVQ, 2 (14) w(z,y) + %y, 2) + ¥(z,z) = 0
f-"{f (]/1'\ for  + y + 2 = 0 (that is, one can put z = —x — y),
jv\/\l’ﬁ gU/ﬁ 0 (15) ("2, 123) 4 (8123, 139) — (123, 13%) 4 (t12, 1239) 4 ("2 23), 14"
'tb no fd where the last equation takes values in the Lie algebra ty and t'2* = 12 4¢3 efc, ¢ D{Jé
/ $ ('-r Note that defining equations of grt have no solutions in degrees one and two. The L ‘ MU‘} D/{/VL" .
l ! Lie bracket induced on solutions of (13), (14),(15) is called Thara bracket, \ { N 4/ S LCﬂL/m
sk

n LA.'].’.':;“, (0, 41 )(¢2) — (0, ¢2)(20y) + [1)1,:,'2]. + / )
4\ DJ "\1"" 0 Theorem 4.1. The map v : v l':)(—;r -y, x), ¢(—x —y,y)) is an injective Lie GA’Q\@
,&—L/‘fr A‘[" 6V a’s algebra homomorphism mapping get to os.
!
k) M(OL)) We split the proof of Theorem 4.1 into several .\‘l(‘p,\‘.\ CO\A‘QA ﬂ"ﬂ_ﬁ L'(:
M(O Proposition 4.2. Let o> € get. Then, ¥ = v(v) verifies /\@ﬂ‘rh'lol +D TL\L

1,2 ;2.3

. bo, . . 12 g2 _
) JMF Shhl ", A W OF A5 otk

We defer the proof of this proposition to Appendix

A\ W\O/Q’ - -
\hﬁé @ l:)L) o - Proposition 4.3. im(v) C l‘ar_;. (to L/‘/K[‘Jof_gz
o Sl 2

Proof. Using equation (16) we compute
S(V(xr+y))=[d¥)(x+y+z)=214 (12, 423) (z 4 y+z)=0
because 12,12 € sders. Since ¥ € ery is of degree at least three, W(x + y) is of
degree at least four, and by Theorem 2.1 this implies ¥(x + y) = 0 and ¥ € sders.
Similarly, we compute
S(div(¥)) = div(d¥) = div((t"2 2%) = 0
since t'2 {23 ¢ toz. By Theorem 2.1, this implies div(¥) € im(4) and ¥ € (‘Lh O
Proposition 4.4. v : get i‘l‘lz is a Lie algebra homomorphism.
Proof. Let v, € grt and compute (a,b) = [v(y), v(¥2))].

alx,y) v( ) (Yo(—x — y, ) — v(¢2) (Y (=2 — y, x)
+ {(1[—1—:/1)L (—1—4/1)
((0, ¢y )(¥2) = (0, 92)(¥y) + [¥y, ¥2]) (-2 — g, z),

where we used that v(v ), v(¢) € sdera. Similarly, we have

b(z,y) v )(a(—x —y,y)) — v(2) (V1 (—z - y,y)
b [z =y, y), Yo~z — 4, y)]
((0,41)(32) = (0. 92) (1) + [41. 92]) (=2 — y, ).

In conclusion, [v(v), v(v2)] = v([1, ¥2]m). as required. O

vl ('r,,'[—.r -y x), P(—r —y.y))

Q" E}C/ /(/Il/ éﬁ&[l”L 720
Lit(A é)\% lu“/
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16 ANTON ALEKSEEV AND CHARLES TOROSSIAN

This observation completes the proof of Theorem 4.1.

It is known [11. T] that there exit elements a3, € grt of degree 2n + 1 for all
n = 1,2,... Modulo the double commutator ideal [[liez, liez], [lie2, liea]], 02,41 has
the following form,

2n

o (2n +1)! . on—k
(17) O2n41 = Z m mlf. ! H(ly 5 [l .‘/],
k=1

Proposition 4.5. fowv(os,1) gantl,

Proof. Equation (17) implies that the linear in = part of a(z,y) = o(—z — y, ) is
equal to (2n + ])ﬂ(l;’:" x, and the linear in « part of b(z,y) = o(—x — y, y) vanishes.
Hence, the coefficient in front of tr(zy®") in div(¥(o2,+1)) is equal to (2n + 1), and

(li\'(l/(ﬂg,,.])) _”(_,,‘_’nt 1 —(z+ y)2n4 1 + y!rn I) _(5“,(1.2'10 1)‘
which implies f(v(00,1)) = =221, O

Theorem 4.1 shows that €v, is infinite dimensional, and Proposition 4.5 implies
that characters fi, k = 3,5, ... aresurjective. The Lie algebra bv, contains a central
one dimensional Lie subalgebra K¢ for ¢ = (y, ), and a Lie subalgebra isomorphic
to the Lie algebra grt. This observation suggests the following conjecture on the
structure of tv,.

Conjecture. The Lie algebra Evs is isomorphic to a direct sum of the Grothendieck-
Teichmiiller Lie algebra grt and a one dimensional Lie algebra with generator in
degree one, bo, = Kt @ grt.

Remark 4.1. The Deligne-Drinfeld conjecture (see Section 6, [7]) states that grt
is a free Lie algebra with generators o3,41. In [18], Racinet introduced a graded
Lie algebra dmry related to combinatorics of multiple zeta values. A numerical
experiment of [10] shows that up to degree 19 the Lie algebra dmry is freely gener-
ated by o251, and that dmry C get. A numerical computation by Albert and the
second author [1] shows that up to degree 16 the dimensions of graded components
of tvy coincide with those of Kt & lie(o3,05,...) (up to (l('grtr 7. the computation
has been done by Podkopaeva [16]) . Since Kt @ v(grt) C tvy, we conclude that
the Conjecture stated above and the Deligne-Drinfeld conjecture are verified up to
degree 16.

5. THE KASHIWARA-VERGNE PROBLEM

5.1. Automorphisms of free Lie algebras. Recall that one can associate a
group G to a positively graded Lie algebra g = [];-, gx with all graded components
of finite dimension. G coincides with g as a set, and the group multiplication is
defined by the Campbell-Hausdorfl formula. If g is finite dimensional, G is the
connected and simply connected Lie group with Lie algebra g. Even for g infinite
dimensional we shall denote the map identifying g and G by exp : g — G and its
inverse by In : ¢ —+ g. Then, the definition of the group multiplication in G reads:
exp(u) exp(v) = exp(ch(u,v)).

Lie algebras tder,,, sdev,,, tv,, and 573 introduced in the previous Section are pos-
itively graded, and all their graded components are finite dimensional. Hence, they
integrate to groups. We shall denote these groups by TAut,,, SAut,,, KV, and KV,

Thise gronps  onglt fo P vt dscrpims.
TF 1 most anroying fat SAc, 7S bigges

d by adins fuorm)

((/\ﬁ' \/Q/g ('ku/j} ﬂmﬂ, 15 AI‘%,;/ ﬂM wfve
/,L,;

\/'{'/7["‘”"(

97uf ).

At e gone mt, Shut, ¢ mbnﬂj " Q{WZ/'M%

= bt )

of Th compty grayp of pun Poofl

Sy oy fru— bl MPor pwfion
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respectively. The natural actions of tder,,, sder,,, kv, and tv, on lie,, and on tr,, lift
to actions of the corresponding groups given by formula

/\[O ?l\/i?/o exp(u)(a) : Zu"(a).

' . - o g PR : /\U)S 4,

where u"(a) is the n-tuple action of the derivation « on a. Note that the group . /"\
TAut,, consists of automorphisms g of lie, with the property that for each ¢ CO’\( /

S n there is an inner automorphism g; such that g(x;) = gi(«;). Furthermore, V
the group SAut,, is a subgroup of TAut,, singled out by the condition g(x) = z for
z=3" 2 o

In order to discuss the groups KV,, and KV, we introduce a Lie group 1-cocycle

: TAut,, — tr,, which integrates the Lie algebra 1-cocycle div : tder,, — tr,,.
e ugally |

Proposition 5.1. There is a unique map j : TAut,, — tv,, which satisfies the group
a pbﬂc{:' on Pf(b?f) cocycle condition

chof FI@; (18) J(gh) = 3(g) +g-(h),
PV’\C‘} and has the property
L\\/L \’}’ 5”"'5% (19) ‘%j(exp(su)):s_(. div(u). _
+ Proof. Let g be a semi-direct sum of tder,, and tr,. The cocycle property of the CufJfV U-IV*J/\/\/:I =
(f ;Q)A , s o Ly algobra homomorphism. Defne 7(csp(a) by formmla exp(o + div(u) — = EAp)+ UV
exp(j(exp(u))) exp(u). For g = exp(u) and h = exp(v) we have ——VJJ'\/\L

exp(j(gh))gh = (exp(j(g))g)(exp(i(h))h) = exp(i(g) + g - j(h))gh
which implies (18).
Equations (18) and (19) imply the following differential equation for j:
1
#j(('xp(su)) div(u) +u - jexp(su)).
IS

Given the initial condition j(e) = 0, this equation admits a unique solution,
u

F e" —1 X
J(exp(u)) — - div(u)
u
which proves uniqueness of the cocycle j. O
Remark 5.1. Equation (18) for h = ¢! implies j(g~') = =g~ - j(g).

Proposition 5.2. The group KV,, is isomorphic to a subgroup of SAut,, singled
out by the condition j(g) = 0.

Proof. Let u € tv,,. Then, div(u) = 0 implies j(exp(«)) = 0 and exp(u) € KV,,. In
the other direction, j(g) = 0 for g = exp(u) implies div(u) = u/(e* — 1) - j(g) = 0,
and u € to,.

Proposition 5.3. Let g € KVa. Then, j(g) € im(d).
Proof. Let u € fv,. Then, div(u) = tr(f(z) + f(y) = f(z +y)) with f € z?K[[z]].

Note that u - tr(f(x)) = u-tr(f(y)) = 0 since u acts as an inner derivation on =
and as a (different) inner derivation on y. Furthermore, u-tr(f(x +y)) = 0 because
u(zx +y) = 0. Hence, u - div(u) = 0, and j(exp(u)) = (e* — 1)/u-div(u) = div(u) €
im(4). O

|- c@(J(/g //WW/MZ//?/ j/ﬂrf//hjs:

F~ (ﬁT)
0—HA — AeE-"S¢— o
i )

_ L
ZEF: \/\;Iweﬁ,( 1~Joop ’Zéalfv 90 iy
a%ﬂorj ‘7{’/”5 - Q(\/ &j.
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18 ANTON ALEKSEEV AND CHARLES TOROSSIAN

5.2. Scaling transformations. For 0 # s € K consider an auntomorphism A, of
the free Lie algebra le, such that A : x; +» sz; for all i = 1,...,n. We have
Aq Asy = A 1ay, (A) 7! = A1, and A = e. For example, we compute

Aglch(z,y)) = ch(sz, sy) = schy(z, y).

Note that for g € TAut,, an automorphism g, = A.gA; ! is also an element of
TAut,. Indeed, g(x;) = gi(x;) = e®x;e ?, where g; is an inner automorphism of
lie,, given by conjugation by ¢* for a € lie,,. Then,

9o(mi) = Aug A (@) = s T Ayg(a;) = MWz

proving gs € TAut,. Moreover, since a, = A (a) is analytic in s with ag = 0, we
conclude that g, is also analytic in s with go — e. We shall denote the derivative
of g, with respect to the scaling parameter s by g,.

Proposition 5.4. Let g ¢ TAut,,. Then. u; = _tj,g," has the property us, =
s 1AwuA Y, where u = uy.

Proof. 'Let [ be a derivation of lie,, defined by the property {(x;) = x; for all i. We
have, A,A7! = s, and

us = gsgs ' = 81— gslg; ") = s ALl - glg M)A
Hence, u = u; =l — glg~" and u, = s ' A;uA;! as required. m}

Note that u, = s (a(szy, sx2,...),...) is analytic in s with ug given by the
degree one component of u. For g € TAut, we denote by s, : TAut, — tder,
the map ks : g > us = s A (I — glg " )A; ', and we put x = s;. Similarly,
let u € tder,, set u; = s"‘A,uA,” and denote by £, : Qer,, — TAut, the map
L, : u — g, defined as a unique solution of the ordinary differential equation
9595 ' = uy with initial condition gy = e. We denote £ = k.

Proposition 5.5. The maps I and & are inverse to each other.

Proof. Let g € TAut,, and consider u = x(g). Then, u. = s ' AwA;" = k(g) and
gs = AsgA; " is a solution of the ordinary differential equation (ODE) g. = wu.gs
with initial condition go = e. But so does £2,(u). Hence, by the uniqueness property
for solutions of ODEs, we have g = E(u) = E(x(g)). In the other direction, let
u € Wer, and consider ¢ = E(u). Then, g = AgA;' = Ei(u) and s.(g) =
3595 " = us. Hence, k(E(u)) = u as required. (m]

Automorphisms A, extend from lie, to Ass, and to tr,. Note that for u € tder,
and u, = s ' AuA; ! we have div(us) = s 1A, - div(u). Similarly, for g € TAut,
and g, = A,9A;" we obtain j(gs) = As - j(9).

Proposition 5.6. Let g € TAut,, and u = x(g). Then,
dj(gs 5 :
(20) Boe) o, 300+ ivius)
Proof. We compute
3(90) = 3(949: 1 9¢) = 3909 1) + (9095") - 3(g5)-

Taking a derivative with respect to ¢ and putting ¢ = s yields the equation (20),
as required. (]
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For g = E(u), equation (20) at s = 1 implies the following relation between j(g) ~N/
and div(u): {-j(g) = u-j(g) + div(u). By using equation u = [ — glg—" we obtain
glg ' - j(g) = div(u).
Defined on page 7

5.3. The generalized Kashiwara-Vergne problem. The generalized Kashiwara-
Vergne (KV) problem is the following question:

HD\I\/ N '{Llﬂ Generalized KV problem: Find an element F' € '{,/I\mv_» with the properties 15 l")— C{'ﬁ/
Lo mbrgre (21) Fle+y)=chizy), F\-’Sft uat

f\_( %) -L, ’L and T /L rn\ ‘V}’

lSoyf‘o// ‘Sm‘ (22) J(F) € im(3). of Y © }’0?# ;/q}\

j-f‘ﬂ'll_( n‘(' Samd We shall denote the set of solutions of the generalized KV problem by Sottfs
7~ -y 5 7_ For any s € K one can introduce r('.s;(-alml '\'vrsi()ns of equations (21) and (22) as
{:‘(ﬁx ).: (_ ed F(xz + y) = chy(x,y) and j(F) € im(d,). We shall denote the corresponding set of
® solutions by Sol,(KV). For s = 0, Solg(KV) = KV,. For all s # 0, Sol,(KV) ~

// Sul(lﬁ-’) with isomorphism given by the scaling transformation '+ F, = A, FA_ ',

y _ Proposition 5.7. Let I' € Sol(‘a’) and a € try. Then, da = F - (da).
/ Proof. We have, a = tr(f(x)) for some formal power series f. We compute

F - (da) F-tr(f(z) = flz+y)+ f(y) _

fe tr(f(z) — f(ch(z.y)) + f(y)) = da.

ALOEM/ Here we used that F - tr(f(x)) = tr(f(x)) and F - tr(f(y)) = tr(f(y)) since F acts
as an inner automorphism on = and as a (different) inner automorphism on y. We
also used that F - tr(f(x + y)) = tr(f(ch(x, y))) because F(z + y) = ch(z,y). 0O

The fact that S()l(lﬁ') is non empty has been proved in [2]. We shall give an
alternative proof in the end of the paper. In order to preserve the logic of the

presentation, we shall not be using the existence of solutions of the KV problem Z‘ { ) !)
until we prove it. T \AS LVS “-Uh\9

Theorem 5.1. Assume that S()](ﬁ') is nonempty. Then, the group r\'e acts on

!
Sul(ﬁ\\-') by multiplications on the right. This action is free and transitive. J(F): F(A\”\-)

Proof. Let F € S()l(ﬁ) and g € ﬁ"g‘ Then, (Fg)(x + y) F(g(x + y)) 7
F(z +y) = ch(z,y) and j(Fg) = j(F) + F - j(g). Note that j(F) € im(d) and, o ~|
by Proposition 5.3, j(g) € im(d). Hence, F' - j(g) € im(8) and j(Fg) € im(é). In i P (0[\0\-) ',:—
conclusion, ﬁ"._, acts on the set Sul(ia;) by right multiplications. This action is
free since the multiplication on the right is.
Let Iy, F5> € Sol(ﬁ'} and put g = F, 'F,. We have, g(x+y) F Y Fy(z+y))
Fy ' (ch(z,y) = = +y and j(g) = j(Fy ) + Fy V- G(F) = Fi ' (i(F2) - 5(Fy).
Since j(F}),j(F2) € im(3), we have F (1) - () € im(8) and g € KV,.
Hence, the action of Iﬁf‘g on S()I(I;'\\") is transitive. O

The Kashiwara-Vergne problem was stated in [13] in somewhat different terms.
We shall now establish a relation between our approach and the original formulation
of the KV problem (KV conjecture).

ﬁ/ /lﬁ/’S T JA@W@ waJj /\o/")o/’ho/‘/A/th <
= — P Wy
VF, F il gg%
{Lﬂt rLdug %o Some S/CC/'F/_C o W&ég

ﬁLr b L\/é/AZ
\/ {:; ~—)F~—m% < 2
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20 ANTON ALEKSEEV AND CHARLES TOROSSIAN

Theorem 5.2. An element IF € TAuty is a solution of the generalized K'V problem
if and only if uw = k(F) = (A(x,y), B(z.y)) satisfies the following two properties,

(23)  z+y—ch(y,x) = (1 —exp(—ad))A(z, y) + (exp(ad,) — 1) B(z,y),
and
(24) div(u) € im(3).

Proof. First, we show that equation F'(x + y) = ch(z,y) is equivalent to equation
(d/ds — us) chy(z,y) = 0. Indeed, we have
Fux+y) = AFA; Y (x+y) = s "AF(z +y) = s ' Acch(z, y) = chy(z, y)
and
us(ehy(,)) = B (e (a9) = B +9) = & (Byfa + ) = 2208,
In the other direction,

% Fa_‘(Chl(I:y)) - F;l (d—(i = ua) Ch,(.T, y)=0
implies that F, '(ch,(x,y)) is independent of s, and comparison with the value at
s = 0 gives F, (chs(z,y)) = 2+ y or Fs(z+y) = chy(z,y).

A straightforward calculation (see Lemma 3.2 of [13]) shows that equation (d/ds—
ug) chy(z, y) = 0 is equivalent to (23). -

Finally. we compare equations (22) and (24). Let I € Sol(KV), j() = a(tr(f(x))).
We compute,

div(u) = PIP1 - §(F) = FIP-'-tr(f(z) - f(ch(z,v)) + f())
Flte(f(z) ~ f(z +y) + £(3))
Ftr(é(x) — 6(x + ) + 6(v))

tr(¢(x) — g(ch(z,y)) + 4ly)) € im(d),

where ¢ = zf'(x) results from the action of the derivation [ : z" +» naz™. In
the other direction, assume div(u) € im(d). Then, for u, = s AuA7 we have
div(u,) € im(3,). Equation (d/ds —uy)j(Fs) = div(u,) implies d/ds(F " - 5(Fy)) =
P,V div(ug) € im(8). Hence, 1, - j(Fs) € im(8) and j(Fy) € im(3,). m}

Ihan

Remark 5.2. Let g be a finite dimensional Lie algebra over K. Then, A, B € lie;
define a pair of formal power series on g x g with values in g which satisfy equation
(23). By applying the adjoint representation to the equation div(u) = d(¢) we
obtain an equality in formal power series on g x g with values in K,

(25) Tr(ad, od: A + ad, ody, B) = Tr(é(z) + ¢(y) — &(ch(x,y))).

Here (d.A)(2) = dA(z +tz,y)/dt|t=¢ and (d, B)(z) = dB(z,y +tz)/dt|;~o. Indeed,
for A € liez consider U(z,y,z) = dA(x + t2,y)/dt|s=o € lies. Tt has the form
U = ad,(z) for some a € Ass;. We compute (see equation (5)),

dt
showing ad(d, A) = d. A. Similarly, ad(9,B) = d, B.

a=B,U ;%) = (i .M + tz,y)) leeo = 824
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6. DUFLO FUNCTIONS

Let F € Sol(ﬁ). Then, 3(F) = tr(f(z) — f(ch(z,y)) + f(y)). and div(s(F')) =
tr(o(x) — p(ch(z,y)) +dly)) for f,¢ € x*K[[z]]. We shall call f(z) a Duflo function
of F. In this Section, we describe the set of formal power series which may arise as
Duflo funetions associated to solutions of the KV problem.

Proposition 6.1. Let u € tdery and assume that it satisfies equations (23) and

(24) with div(u) = 5(Lr(¢(:r))). Then, the even part of the formal power series ¢ is
given by the following formula

1 1B, , 1( =z z
¢uvcn(1)=§(¢(1) + ¢(-1))=§kz=:27!l' —E(m—l+§),

where B,, are Bernoulli numbers.

Proof. We follow [3] (see Remark 4.3). Write A(z,y) = a(ad,)y + ..., B(z.y) =
ba+B(ad,)y+.. ., where b € K, a, 3 € K[[z]], and . .. stand for the terms containing
at least two y’s. Replace y +— sy in equation (23), and compute the first and second
derivatives in s at s = 0. The first derivative yields

d =
¥ g v = (1-¢ ™)a(ad,)y bz, ).
and we obtain
t t 1
W= = o= " I

Note that elements of lie, quadratic in the generator y are in bijection with skew-
symmetric formal power series in two variables,

o0 oc
a(w) = 3 aiguted o 3 aisfadt y,adly]
=0 i,j=0
The second derivative of (23) gives the following equality in formal power series,
1 (w4 v)(e” —e¥) — (u—v)(e"" —1)
2 (evtv —1)(e* —1)(ev = 1)
where the left hand side corresponds to the second derivative of the Campbell-
Hausdorff series — ch(sy, ), and a(u, v) represents the second derivative of A(x, sy).
By putting v = —u in the last equation we obtain,
[ S| t et 41
Boaalt) = 5t =3 @-D-ct) det—-1
Here 3,4a(t) = (B(t) — 3(—1))/2.

Finally, consider equation (25) and compute the contribution linear in y (that
is, of the form tr(f(x)y)) on the left hand side and on the right hand side. Since
we only control the odd part of the function 3(t), we obtain an equation in odd
formal power series,

Bodd(t) — qodd(t) = -(¢,(t))wd = —(¢cuul)’(!')

- (1-6""“")02("1v)+g(lt~l')+(ﬂ(l')-.5'(u)),

which implies

i 1 t t
¢cvtn(l) = 5 (m = 5) 1
as required.
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Proposition 6.2. Let F € Sol(KV) and f € 22K |[x]] such that j(F) = 3(tr(f(x))).
Then, the even part of f(x) coincides with the function feyen(x) = -;- In(e*/2 —
e /2)/z), and for every odd formal power series foqa(x) = Spo; forr1a®* ! there
is an element F' € Sol(l,(V) such that j(F) = 8(tr(feven () + foda(x))).

Proof. Let f and ¢ be the power series in j(F') = d(tr(f(2))) and div(u) =
4(tr(¢(x))) for u = x(F). Then, we have (see the proof of Theorem 5.2) ¢(s) =
sf'(s). By Proposition 6.1, we obtain

= Peven(s) , 1 — By [ e? — gm4/2
fcvcn—/ s ds—2§k-k!s_-2]" 3 .

Let F € Sol(KV) with j(F) = 3(tr(f())), and g € KV3 with j(g) = (tx(h())).
Then, F'g € Sol(KV) and
§(Fg) = §(F) + F - j(g) = 8(tr(f(z) + h(x))).
Put g = exp(u) for u € £o,, and compute j(g) = (e* — 1)/u - div(u) = div(u).
By choosing u = — Y27 | hary1#(025+1) we obtain j(g) = div(u) = d(tr(h(z))) for
h(z) = 352 har12®*+1. Hence, by an appropriate choice of g € KV, one can

make the odd part of the linear combination f(x) + h(x) equal to any given odd
power series without linear term. (]

Remark 6.1. The group K’\7'2 acts on Sol(ﬁ). and this action descends to the
space of formal power series 22K|[z]] along the map f : Sol(KV) — 22K]z]]. Tn
Proposition 6.2 we have used this action to change the odd part of f(F). Previously.
this action (for the Grothendieck-Teichmiiller subgroup GRT C ﬁz) on the Duflo
functions has been described in [15] (see Theorem 7).

Proposition 6.3. Let F = exp(u) € Sol(KV) with u = (a,b) € Wevs such that

a(z,y) agy + afady)z + ...
bz,y) = box+Blady)z+...,

where ag,by € K, o, 3 € sK[[s]], and ... stand for terms which contain at least
two z. Then, the Duflo function associated to I' satisfies equation [’ = 3 — .

Proof. Consider the part of j(F) = tr(f(z) — f(ch(z,y)) + f(y)) linear in the
generator . On the one hand, we have
F(F)ztin = tr(f(x) = f(ch(z,y)) + f(y))z—tin = — tr(f'(y)2).
On the other hand, we obtain
< e |
I(F)z—tin = (6

u

Aiv(w) = div(u)e-tn
x—lin
Here we used the fact that linear in 2 terms cannot arise under the action of elements
of ters on try. Indeed, such a term would be of the form tr(h(y)[z,y]) for some
formal power series h, and tr(h(y)[x,y]) = tr(h(y)yz — h(y)zy) = 0.

Finally, we compute

div(u)e—tin = tr(z(0za) + y(9yb))z—tin = tr(zaly) — Bly)z) = tr((a(y) - Bly))z).
Comparison with the first equation yields f'(y) = 3(y) — a(y), as required. (]
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In the original formulation of the Kashiwara-Vergne problem the Duflo function
f was assumed to be even.

KV problem Find an element /' € TAut, such that F(z + y) = ch(zx,y) and
J(F) =3 L, B = % In((e*/? — e=*/2)/x).

We shall denote the set of solutions of the KV problem by Sol(KV). Note that
the KV problem is equivalent to finding an element « (A B) € tdery which
satisfies equation (23) and the identity div(u) = ( tr Zk-z )

Remark 6.2. The group KV, acts on Sol(KV) by right multiplications. This

action is free and transitive. The proof of this statement is completely analogous
to the proof of Theorem 5.1.

7. PENTAGON EQUATION

In this Section we establish a relation between the Kashiwara-Vergne problem
and the pentagon equation introduced in [7]. Let ® € TAutz. We say that &
satisfies the pentagon equation if

(26) PI23A 1231 _ p1.2.31.23.44,2.3.4
Proposition 7.1. Let I' € So](KV ). Then,
(27) Pd = (FI2.3)—I(FI.'.’.) IF'J.BFI.‘.’S

is an element of KVg, and it satisfies the pentagon equation.
Proof. First, we compute

Bz +y+2) (#123)~ 1 (pl2)=1 P23 123 (5 4y 4 2)
(l,'12.3)-l (l,-l.z’)-11.'2,3(ch(:,_.Y y+ 2))
(F'23)"Y(F'2) "1 (ch(x, ch(y, 2)))
(F123)~ (ch(x + g, 2))

z+y+z

| T | | A

Hence, ® € SAuts. Next, we rewrite the defining equation for ® as F12[12:3¢ —
F23 12 and apply the cocycle j to both sides to get

J(FY2) + FY2 . §(F123) 4 (FY2F123) . (@) = j(F?®) + F?° . j(FV®),
Since j(F') = tr(f(z) — f(ch(z,y)) + f(y)). we have
G(FNE) 4 FUEG(F133) tr(f(z) + f(y) — f(ch(z,y)))

j F12 . te(f(z +y) = f(ch(x +y), 2) + f(2))
= tr(f(z) + f(y) + f(2) = f(ch(ch(z,y). 2)))
Similarly, we obtain
FE3) 4 FBEGENB) = tr(f(y) = f(ch(y, 2)) + f(2))
+ 123 () = fch(z,y +2)) + fly +2))

tr(f(x) + f(y) + f(2) = f(ch(z,ch(y, 2)))).

We conclude (#12F123) . j(®) = 0, j(®) = 0 and P € KV3.

The pentagon equation is satisfied by substituting the expression for ¢ into
the equation, and by using that for ® € KV3 C SAuts we have 1231123 —
PL2II234 g0 L2234 p234 123 o
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Let Iy € Sol(@) and ®; be the corresponding solution of the pentagon equa-
tion. Consider another element F; € So](ﬁ/). By Theorem 5.1, F = Fig for some
g€ ﬁz. The corresponding solution of the pentagon equation reads

& = (F23)- ‘(F'2 123 pL2
(g 123) F123) l(gl2 l(p|2 1F23 2'1pl2'5 1,23
(g'2%)~ n(gn 2)=1, g23 4123,

(28)

Equation (28) defines an action of KVg on solutions of the pentagon equation with
values in KV3. Actions of this type are called Drinfeld twists.

Proposition 7.2. Let I}, I € Sol(ﬁ) and assume that they give rise to the same
solution ® of the pentagon equation. Then. Fy = Fy exp(At) for some A € K.

Proof. First, note that for g = exp(At) we have for all ® € KV
( 123) l(gl2) l¢g23 1,23 _ -A(:q)ckn:@
L

where ¢ = t'2 4+ ¢! 4 23 is a central element in sder and in tog.

The degree one component of !02 is spanned by ¢, and ¢ is central in !nz Hence,
one can represent g = Fy ' F, in the form g = exp(M) exp(u), where u = Yo ouk €
ﬁig. Let @ be a solution of the pentagon equation which corresponds to both Fy
and Fy. Let kg be the lowest degree such that wy, # 0. Then, equation ¢ =
(92%%) "1 (gh?) ' Bg?3g" 2% implies duy, = 0, and by Theorem 3.1 we have ug, =0
which implies « = 0 and g = exp(At). as required.

Proposition 7.3. Let ® = exp(¢) € TAuty be a solution of the pentagon equalion,
where ¢ = z,:il Or with ¢y € Wery homogeneous of degree k. Then, ¢, = 0 and
o2 = (aly, 2], B[z, 2], ¥[x, 9]).

Proof. The degree one component of the pentagon equation reads d¢; = 0. Since
the degree one component of H3(tder,d) vanishes, we have ¢, = df for a degree
one element f € ers. However, the degree one component of Wer; is spanned
by r = (0,z) and t = (y,x), and both r and ¢ are in the kernel of d. Hence,
¢1 = 0. This implies that the degree two component of the pentagon equation is
of the form, d¢; = 0. Then (see the proof of Theorem 3.1), ¢ is expressed as
(aly, 2], B[z, 2], 7[z, y]) for some a, 3,7 € K. (m]

Note that H*(tder, d) is one-dimensional, and the cohomology lies in degree two.
One can choose the isomorphism H3(tder,d) 2 K in such a way that it is represented
by the map 7 : ¢» = (aly, 2], B[z, 2], 7]z, 3]) — a + B + 7.

Proposition 7.4. Let F' = exp(u)exp(sr/2)exp(at) € TAuta, where u is an
element of tdevy of degree greater of equal to two. A that the expr

& = (F123) 1 (121232 s an element of KV, and denote m(¢2) =
Then, A = s%/8 and F € Sol,(KV).

Proof. Note that the degree two component of ¢ = In(®) is given by

2 2 2
¢ = duz+ 38—([1'2'3, PB4 123 12)) = duy +%~[r2'3, 2] = dua+ 18-([_1/, 2},0,0).

Here we used the classical Yang-Baxter equation of Proposition 3.2. In conclusion,
A= 7(¢2) = /8.
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Denote x(z,y) = F(z+y) =z +y+ 3[x,y] +..., where ... stand for elements
of degree greater or equal to three. Since ®(x +y + z) =« + y + 2. we have

x(@,x(y,2)) = FP3F" Bz 4y + 2) = FY2F3(z +y + 2) = x(x(2,9), 2).

By Proposition 2.1, this implies x(z,y) = che(z,y). Denote b(z,y) = j(F') € tra.
By applying j to the equality #%3#123 — 1.2 412:3¢ we obtain,

by, z) + 123 b,y + 2) = b(z,y) + IV bz + y, 2).

Equivalently, ,(b) = 0 which implies. by Proposition 2.2, b € im(3,) and I €
Sols(KV). ]

Theorem 7.1. Let ® € KV3 be a solution of the pentagon equation with w(d2) — A
and let s S\K be a square oot of 8\, s*/8 = X. Then, there is a unique element
F € Sol4(KV) such that F = exp(u) exp(sr/2) € TAuts, where u is an element of
Wero of degree greater of equal to two, and & — (F12:3) 1 (F1.2)-1 23 1,23,

Proof. Our task is to find f = ZZ;, fr € tders with the degree one component
J1 = sr/2 such that F' = exp(f) solves equation ® = (F"12:3)~1(f1:2)~1 223 111,23,
In degree two, it implies,

2
dfe + 5 ([5:2).0.0) = 62.

Recall that dg, = 0 and 7(¢) = A = s%/8. Hence, this equation admits a solution,
and it is unique since d : er; —+ erg has no kernel in degrees greater than one.
Assume that we found F,, € TAuts such that &, = (F!23)"1(F12)- 1 p23p1.23
is equal to ® modulo terms of degree greater than n. Then, FZ3F 23 (x 4y +2) =
F}2E23(2 4 y + z) modulo terms of degree greater than n + 1, and F,(z,y) =
chy(z, y) modulo terms of degree greater than n+1. Since F\234p):23 — )23 1234
and F}2@234 = 234 P23 yodulo terms of degree greater than n+ 1, &, sat-
isfies the pentagon equation modulo terms of degree greater than n + 1. Write
b, = exp(Ppeo¥n), where ¢y = ¢ for k < n and denote ¢ = ¢niy — Yni1-
The pentagon equation for ® and the pentagon equation modulo terms of degree
greater then n + 1 for &, imply dg = 0. Hence, by Theorem 3.1, ¢ = du for
a unique element v € Wery of degree n + 1. Put F,.y = F,exp(u). Tt satis-
fies equation ¢ = (F,ﬁ? i U i) I s F,:ff' modulo terms of degree greater
than » + 1. By induction, we construct a unique F' which solves equation ¢ -
(F123)-Y (12123 423 and has f; = sr/2, as required. By Proposition 7.4,
the element F solves the KV problem, F' € Sol.(ﬁ). O

Theorem 7.1 implies that the Kashiwara-Vergne problem has solutions if an
only if the pentagon equation has solutions ® € KVy with 7(¢2) = 1/8. The next
proposition provides a tool extracting the Duflo function of an element ' € Sol(ﬁ)
from the corresponding solution of the pentagon equation.

Proposition 7.5. Let ¢ = exp(¢) € KV3 be a solution of the pentagon equation
with 7(¢2) = 1/8, and let F € Sol(ﬁ) be a solution of equation (27). Denote
¢ = (A, B.C). and B(x,0,2); 1in = h(ad;)z for h € zK[[z]). Then, the Duflo
function of F satisfies equation f'(x) = h(z).
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Proof. Let F' = exp(u) with u = (a,b). Put a(z,y) = agy + a(ad,)r + ... and
b, y) = boy + Blad,)x+. ... Then, by Proposition 6, the Duflo function associated
to I is a solution of equation f’ = 3 — a.

Denote
ul =ul? 4 w3 = (a(z,y) +al@ +y,2),b(z,y) +alz +y,2), bz + v, 2))
ut=u?t B = (a(a,y + 2),a(y, 2) + b(a,y + 2),b(y, 2) + b,y + 2)),

and observe that ¢ = ch(—u!,u"). The contribution of «” —u' in B(z,0,2) iy is
equal to 3(ad.)r —alad.)z. Note that the linear in 2 contributions in both »' and
u” are of the form (z,2,0). Since

[(2.‘ z, 0)7 (0- h(ﬂd: )Iy 0)] = (Oi h(ﬂd;)[ﬂ?, Z] + [29 h(ad: )x}s 0) =0,
we conclude that the nonlinear terms in the Campbell-Hausdorff series ch(—u!, u")

do not contribute in B(x,0,2),jin. and h(z) = 3(z) — a(z). Hence, f'(x) = h(z),
as required. ]

8. Zy-SYMMETRY OF THE KV PROBLEM AND HEXAGON EQUATIONS

In this Section we introduce an involution on 7 the set of solutions of the gen-
eralized KV problem, and show that the corresponding solutions of the pentagon
equation verify a pair of hexagon equations.

8.1. The automorphism /? and the Yang-Baxter equation. Let I? € TAut,
be an automorphism of lie; defined on generators by R(z) = ¢ *vz, R(y) = y.
Note that R = exp(r) for r = (y,0) € tders, and

R (ch(y. x)) = ch(y, exp(~ ad, )x) = ch(z, ).

Denote by @ the inner derivation of lies with generator ch(xz, y). That is, for a € lies
we have #(a) = [a,ch(z,y)]. Note that the derivation t = (y.z) € ters is an
inner derivation of liez with generator = + y. Indeed, {(z) = [2,y] = [z, z + y] and
t(y) = [y.2] = [v.= + y]. Let F € TAut, be a solution of the first KV equation,
F(z +y) = ch(z,y). Then, FtF'~! = 0. Indeed, for a € lie; we have

FtF~Y(a) = F([F(a),z +y]) = [a, F(z +y)] = [a,ch(z,y)] = 0(a).

Proposition 8.1. RE*! = exp(6).
Proof. Note that R*!(z) = 2 and R*!(y) = ¢~ =y, We compute,

RR*'(z) = R(x) = exp(—ad, )z = exp(—ad(ch(z, y)))z,
and

RR*'(y) = R(exp(— ad.)y) = exp(— ad(exp(— ad,)z))y = exp(— ch(=, y))y,
as required. 0
Proposition 8.2. The element R satisfies the Yang-Baxter equation,
RIZRISR23 _ pRpl3pl2.

Proof. Tn components, we have R'? = (exp(—ad,).1,1), R"* = (exp(—ad.),1,1)
and R*? = (1,exp(—ad.),1). One easily computes both the left hand side and
the right hand side of the Yang-Baxter equation on generators y and z, z + z and
y - exp(— ad.)y. We compute the action of the left hand side on a:

R'“ZR'YR*3(z) = R"R"3(x) = R"*(exp(—ad.)z) = exp(— ad.) exp(—ad, )z,
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and the action of the right hand side,

R e  R?3R'3(exp(— ady)z)
R*3(exp(—ad,) exp(—ad, )x)
exp(—ad.) exp(—ad, )z

which completes the proof. 0

Proposition 8.3. R'?? = R'3R>3. Let ' € TAuty be a solution of equation
F(z +y) = ch(z,y). Then,

Proof. For the first equation, note that both sides are represented by the antomor-
phism (exp(—ad.),exp(—ad.), 1) € TAuts.

For the second equation, both the left hand side and the right hand side preserve
generators y and z, y +— y, 2 +— 2. It remains to compute the action on x:

FASRUB(F23) ) (z) = FA3RY(z) = F*Y(exp(~ adyy2)z) = exp(~ch(y, 2))z,
and the same for the right hand side

R'ZRY3(z) = R"?(exp(—ad; )x) = exp(— ad.) exp(— ad, )= = exp(—ch(y, z))z,
as required. 0

8.2. Involution on Sol(ﬁ). In this Section we introduce and study a certain
involution on the set of solutions of the KV problem.

Proposition 8.4. Let F € Sol(KV). Then, 7(F) = RF*'¢ /% is a solution of
the KV problem, 7(F') € Sol(KV). The map 7 is an involution, 7° = 1.

Proof. We compute,
(F)(z +y) = RF*'e (@ + y) = RF*'(z + y) = R(ch(y,z)) = ch(z,y).
Furthermore,
i(r(F)) = j(RF*'e*?) = R j(F*").
Here we used that div(r) = div(t) = 0 and j(R) = j(exp(—t/2)) = 0. Let f €
22K[[z]] such that () = tr(f(z) = f(ch(z,y)) + f(y)). Then, j(#*!) = tr(f(x) -
[(ch(y,x)) + f(y)) and R - j(F*') = tr(f(2) — f(ch(x,y)) + f(y)) = j(F). Hence,
7(F) is a solution of the KV problem.
Finally,
T2(F) = Rr(#)? e 2 = RR> Fet = PLe = F,
where we used ¢! = ¢, RR*' = exp(@) and FtF~' = §. We conclude that 72 = 1,
and 7 defines an involution on Sol(ﬁ). (]

Proposition 8.5. Let I' ¢ Sol(f(T/) and let ®p be the corresponding solution of
the pentagon equation. Then,

@rp) = (5271

Proof. We compute,

P r)

c:"-’-“n(ps.zl)-l (Rm.s)—1et‘~’/2(p2.1)-1(31.2)—1R-z.apa,ze-e‘*-“/z RL23 32,1, ~t1:23/9
ec/z(pa.zl)- 1 (Rl2.3)- 1 (Fz.l)—l(Rl.2)~IR2,3F3,2R1,23p32.le—~c/2

ec/2(p3.21)— 1 (F‘Z.l)—l(Rz.s)— 1 (Rl.s)—l(Rl.'z)—l R2‘3R"3Rl'2F3'2F32'le_c/2
ec/'z(pa.m)-l(Fz.l)—lpa.zp:rz.la—c/z = ec/2(q,3.2.l)—le—c/2 e (‘}3.2.1)-1.
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Here in passing from the first to the second line we used that g'2p!2:3 = p12341.2
for g € SAuty. h € TAuts, and the definition of the element ¢ = t12 43 1123 ¢ ty:
Proposition 8.3 in the passage from the second to the third line; and finally the
Yang-Baxter equation (Proposition 8.2) and the fact that c is central in vs in the
passage from the third to the fourth line. (m]

Proposition 8.6. Let I € Sol(KV) and x(F) = (A(x.y), B(z.y)) € Qers. Then,
(29)

K((F)) = (c“"zz(y,z) + 2 hay) - ), Ay 2) - S(ehay) - y)) .

Proof. We compute,

dr(F), d
- Tz(is) ls=17(F)™' =r+R
where we used that dR,R;' = r = (y,0) € ery. In the last term, #2-1¢(#21)1
is the inner derivation with generator ch(y, ), and RF>(#>1)" R~ is an inner
derivation with generator ch(z,y). With our normalization condition, it is repre-
sented by (ch(z,y) — z,ch(z. y) — y) € tders.

Finally, for the middle term Rx(F)*'R~' we compute,

R(A, By*'R"'(x) R(B(y, z), Ay, x))e*v (x)

R(e*ds [x, B(y, )] + ety [Ay, z), z] — [A(y, z), e“d'(z)])
[z, B(y, z) + (¢~ ™ —1)A(y, z)]

[z, e B(y, ) + ch(z,y) — z — y].

5 | sl 201~1 p=1_ 1 o210 22,1y-1 p-1
K(T(F)) T ls=1 (F*')" 'R —ERF't(F') B

Here in the passage to the last line we have used equation (23) (with = and y
exchanged). For the action on y we compute,

R(A) B)z.lRAl(y) - R(B(y.:l:)A(y,:r))(y) = R([yr A(y,a:)]) = [yaf“advA(yeI)]'

By adding up all three terms we obtain,

K(T(F)) - (GM"B(y,:t) + C}I(:L', y) = y‘e—ﬂdyA(y’ I))
+ (y: O) - ';'(Ch(xry) -, Ch(.’l}, y) - y)
= (e™=Bly,x) + $(ch(r,y) - 2), e~ " A(y, 2) — 3(ch(z.p) - ),
as required. 0

Remark 8.1. Symmetry (29) has been introduced in [13] (see discussion after
Proposition 5.3).

8.3. Symmetric solutions of the KV problem.

Definition 8.1. An element F' € So](ﬁ) is called a symmetric solution of the
generalized Kashiwara-Vergne conjecture if 7(F') = F.

We shall denote the set of symmetric solutions by SoIT(I’(V). Since the map
K : TAuts — tdery is a bijection, 7(F') = F if and only if x(7(F)) = x(F'). That is,
&(F) = (A(x,y), B(x,y)) satisfies the (equivalent) linear equations

A(z,y) = =By, x) 1 %(ch(r,y) —z), B(z,y) = ¢ " A(y,z) - %(ch(x, y) —y)-

Since equations (23) and (24) are linear in A and 1_3 one can average an arbitrary
solution to obtain a symmetric solution F' with x(F) = (&(F) + w(7(F)))/2.
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___The involution u u®! acts on the Lie algebra to,, and it lifts; t'? the group
KV,. We shall denote the corresponding invariant subalgebra by !ozv = tu, and
the invariant subgroup by KV;ym Cc KV,.

Proposition 8.7. The group W;ym acts on the set Sol” (KV) by multiplications
on the right. This action is free and transitive.
Proof. Let g € KV,
applying 7 we obtam

T(Fg) — RFZ.ngX -t/2 _ RFZI -t/Zy - T(F)g Fg

Hence, Pg € Sol” (KV). =
Consider two elements /1, Iy € Sol” (KV). We denote g = I 'y and compute

- (F1—1F2)2.l . (R—lFlet/2)~—l(R—1F25t/2) . E—t/2(Fl—lF2)et/2 . e—!/2gef/2
as required. m}

and F' € Sol"(KV). By Theorem 5.1, Fg € Sol(KV). By

Remark 8.2. Note that the element ¢ = (y, x) as well as the image of the injection
v:get — ﬁlg is contained in l"fa;vm In fact, it is not known whether any non-
symmetric elements of !ug exist. If correct, Conjecture stated in the end of Section 4
would imply !nz = tu2

Proposition 8.8. Let I' € Sol'(ﬁ’), and let & € KV3 be the corresponding
solution of the pentagon equation. Then,

(30) (1,1.2‘3(1)3.11 =e,

(31) ) /2 _ 52,13 ¢1 ‘/z(d,z.:s.l) 1,678 /253,21
and

(32) et d)/2 (®132) e ' /248.1.2,t"/ /2(p321y-1

Proof. Equation (30) follows by Proposition 8.5. In order to prove equation (31)
recall that 23 — R'3E23 — (exp(—ad.),exp(—ad.), 1) € TAutz. Furthermore,
this automorphism commutes with g*2 for any g € TAuts. In particular, we have
F2IRWZ3(F21)-1 — RL3R23 By substituting R = Fet/2(F2')~! we obtain,

F2.|R|2.3(F2.1)- _ FQ"F2"35("'2“"3)/2(F3"2)"(F“)"',
and
R\BR23  — Fl.sez‘-’/z(ps.l)—lFz.aer’-“/z(ps.z)—l

Fl.3F2.1381"’/2(F2.31)41(1.*3,1)vlI‘Q.si.'zﬁ,let""/z([.‘az.l)‘I(F'3,2)~l.

A comparison of these two equations yields equation (31). Equation (32) follows by
applying the (13)-permutation to equation (31) and by using the inversion formula
(30). (m]

Remark 8.3. Equations (31) and (32) are called as hexagon equations. They were
first introduced in [7] (see equations (2.14a) and (2.14b)).

=9,
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9. ASSOCIATORS

In this Section we consider joint solutions of pentagon and hexagon equations
called associators (with values in the group KV3). We show that Drinfeld’s associ-
ators defined in 7] make part of this set, and we use this fact to give a new proof
of the KV conjecture.

9.1. Associators with values in K'V; and Drinfeld’s associators.

Definition 9.1. An element ¢ € KVy is an associator if it satisfies the pentagon
equation (26). hexagon equations (31) and (32) and the inversion property (30).

Proposition 9.1. Let ® = exp(¢) € KVy be an associator. Then, w(¢z) = 1/8.

Proof. The degree two component of the hexagon equation (31) reads
1
3 13, 423] 4 ¢§.1.3 _¢g.3.1 M ¢2.2.1 —0.

Note that [t!3, %3] = ([y,z],[z,x],[z,yJ) which implies ([t 1%%]) = 3. Also
observe that n(¢§'3-‘) = 7(¢2) and 7r(¢~2'l'3) = 7r(¢g'2") = —7w(¢2). We conclude
that 37 (¢2) = 3/8 and =(¢2) = 1/8, as required. (m]

Proposition 9.2. Let ¢ — exp(¢) € KV3 be a solution of equations (26) and
(30) with w(¢2) = 1/8. Then, each F € Sol(KV) which verifies equation (27) is a
symmetric solution of the KV problem, F € Sol” (KV).

Proof. Theorem 7.1 implies that equation (27) admits solutions /' € Sol(ﬁ). By
Proposition 8.5, &, ) = (<l>§:““)’1 = @®p. Hence, by Proposition 7.2, 7(}F) =
Fexp(At) for some A € K. The degree one component of this equation reads
r+ f,z‘l—l/2 = fi+At. Since fi = r/2+at for some a € K, we haver j,z'l-fl =t/2
and A = 0. In conclusion, 7(F') = I, as required. m}

Recall that by Proposition 3.3 Lie algebras t,, inject into tvo,. In particular, {3
injects into tvg, and the corresponding group T is a subgroup of KVj.

Definition 9.2. An associator ® € KVj is called a Drinfeld’s associator if ¢ € T;.

Drinfeld’s associators can be defined without referring to the Lie algebras tder,,
and b, since both simplicial and coproduct maps restrict to Lie subalgebras t,, in
a natural way. In [6] Drinfeld proved the following theorem:

Theorem 9.1. The set of Drinfeld’s associators is non empty.
This implies the following result:

Theorem 9.2. The set of symmetric solutions of the KV problem Sol'(ﬁ) s non
empty.

Proof. Each Drinfeld’s associator ® = exp(¢) is an associator with values in KV
with 7(¢) = 1/8. Then, by Theorem 7.1, there is an element F' = exp(f) € TAut,
with f; = r/2 which solves equation (27). By Proposition 7.4 this automorphism is
a solution of the KV problem, and by Proposition 9.2 this solution is symmetric. 0O

Remark 9.1. The KV problem has been settled in [2]. The solution is based on
the Kontsevich deformation quantization scheme [14], and on the earlier work of
the second author [21]. Theorem 9.2 gives a new proof of the KV conjecture by
reducing it to the existence theorem for Drinfeld’s associators.
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Proposition 9.3. Let & = exp(¢) € T3 be a Drinfeld’s associator, and let F €
So](ﬁ) be a solution of the KV problem which satisfies equation (27). Write
¢ = h(adpa)t"?+ ..., where h € 2K[[z]], and ... stand for terms which contain at
least two generators t'2. Then, the Duflo function associated to F' satisfies equation
J'(z) = h(x).

Proof. By putting y = 0 we obtain "2 = (y,2,0) + (0,2,0) and > = (0, z,y)
(0, 2,0). Hence,

o(t"?,12%) =0 = (0, é(x, 2),0).

In particular, for ¢ = (A, B,C), we have B(x,0,2); in = h(ad;)z. Then, by
Proposition 7.5, we obtain f/(z) = h(z), as required. 0

Ezxzample 9.1. Consider the Knizhnik-Zamolodchikov associator (with values in
T3) constructed in Drinfeld. Equation (2.15) of [7] yields the function h(z):

—~ ((n) .-
h(x):-;(%)", 1

Note that our associators are obtained by taking an inverse of associators the in
Drinfeld’s paper. The Duflo function corresponding to the Knizhnik-Zamolodchikoy
associator is given by

flz) = -i n(CQ(:i))" = E%x —In (F (l - 2—:;)) .

n=2

Here + is the Euler’s constant, and the term ~x/2mi cancels the linear part in the
logarithm of the I'-function. Formula for f(x) matches (up to a sign change) the
expression In(F},;ce(x)) in [15].

9.2. Actions of the group GRT. Let Lie, be a group associated to the Lie algebra
lie,, (such that a-b = ch(a,b)). Then, one can view the Grothendieck-Teichmiiller
group GRT as a subset of Lie; defined by a number of relations (see Section 5 of
[7]). and equipped with the new multiplication,

(hy *Grr ha)(@,y) = by (@, halz,y)yhy (@, y))ha (2, y).

Remark 9.2. Note that we have chosen to act on the second argument of the
function A rather than on the first one (as in [7]).

Let ¢» € grt and consider a one parameter subgroup of GRT defined by ),
he = expgrr (). Write hy = hy_ *grr hs and differentiate in ¢ at ¢ = s to obtain
dhy(x,y) =
e = @ he(@ y)yh(z,y) " ha(,9).
This differential equation together with the initial condition hg(x,y) = 1 defines
the exponential function expgpy in a unique way.

Proposition 9.4. Let ¢» € grt. h = expepr (1) € GRT and g = exp(v(v)) € KV,.
Then,
= (gl2.3)—l(gl.Z)—lg2.3gl.23 - h_(tla, f2'3) cKVj.

Proof. First, observe that for g € SAuts, ¢'? commutes with ¢'%%, and ¢g** com-

mutes with ¢'23. Hence, the maps g +— ¢' = ¢"2¢'2?% and g +— ¢" = ¢*%"® are
group homomorphisms mapping SAut, to SAuts.
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Next, replace ¢» by sy and consider the derivative in s of g. = (g') 'g:

i —1 [dgs ( ry— dg' e
e~ () (F -6 ) a

= (g}) M(dv(¥))gs

= (o) Mo(t",2%)g]

= U(t'2,(g4)'>3gL) (g4) gk

= V(2 (90) ' git(gl) ' 9)d

= '-"’(’1'21!]."2'3(9:)_|)9s-
Obviously, go = € € KV3. We conclude that h(t'?,1*>%) and g satisfy the same first
order linear ordinary differential equation with the same initial condition. Hence,
they coincide, as required. 0

The Lie algebra homomorphiﬁll) v:gel - ﬁag gives rise to a subgroup of ﬁz
isomorphic to GRT. The group KV acts on the set of solutions of the KV problem,
and on the set of associators with values in KVy (see equation (28)). In [7] (see
Section 5) Drinfeld defines a free and transitive action of the group GRT on the set
of associators with values in 7%3. This action is given by the following formula,

(33) g: q’(ll.'l,iz.ll) —> 0(,1,2vyt2.sg—l)g’

where g = expgrr(¥) € GRT and ® € T are viewed as elements of the group
Liea(t'2,123). The following proposition relates these two actions.

Proposition 9.5. When restricted to the set of Drinfeld’s associators, the action

of the group GRT on associators with values in KVy coincides with the canonical
action (33).

Proof. Let g € KV and rewrite the action (28) on (t2,123) € Ty as follows,
P g= (gl2.3)—l(gl.2)-—l¢('l.2’ t2.3)g2.3gl.23 - Q(‘I.Z’ gt'z.fig—l)g’

for g = (¢"%) 7 '(¢"*)'g*>%¢" . Let ¢+ € grt and g = exp(v(¢)). Then, by
Proposition 9.4 we have § = (expgprr(4))(t12, %), and the action (28) coincides
with the canonical action (33). 0

Remark 9.3. If Conjecture of Section 4 is correct, we have ﬁz = Kt x v(GRT),
where the additive group Kt injects into ﬁz via the exponential map, At
exp(At). In particular, this implies @2 = ﬁ;vm since both Kt and v(GRT)
are contained in W;ym. Note that the action of Kt on associators is trivial, and
the sz;g]%ion of GRT on the set of Drinfeld’s associators is transitive. The action of
KV,  on associators with values KVj is also transitive, and we conclude that all
associators with values in KV are Drinfeld’s associators.

Remark 9.4. For Drinfeld’s associators, Furusho [12] showed that the hexagon
equations (31), (32) and the inversion property (30) follow from the pentagon equa-
tion and the normalization condition w(¢2) = 1/8. In the case of associators with
values in KV3, Proposition 9.2 shows that the hexagon equations (31), (32) follow
from the pentagon equation, the inversion property and the normalization condi-
tion w(¢o) = 1/8. If we assumed KV, = KV; . the inversion property would
be automatic, and we would get the analogue of Furusho’s result for associators
with values in KV3. If Conjecture of Section 4 holds true, we recover the Furusho's
result.
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APPENDIX: PROOF OF PROPOSITION 4.2

In this Appendix we give a proof of Proposition 4.2. Tt is inspired by the proof
of Proposition 5.7 in [7].
Denote d¥ = (a, b, ¢). We have,

b = —yl-z—yy)+tv(-z—y—zyt2)—d(-z-y—zz+y) +v(-y—2y),
c = Ylx-y-zy+tz)-v(-z-y—z2)+d(-y-22)

Let g be the semi-direct sum of tders and lieg. The following formulas define an
injective Lie algebra homomorphism of {; to g:

112 s (y,2,0) € Werg, 1% (2,0,2) € Werg, 2%+ (0,2,y) € Dery,
i 2 € lieg, 134 1 y € lieg, 34 1 2 € lieg.

Indeed, t'2,t** and (2% span a Lie subalgebra of tderz isomorphic to t3, and z,y
and z span an ideal of t; isomorphic to a free Lie algebra with three generators. It
remains to check the Lie brackets between generators of these two Lie subalgebras.
For instance, we compute,

(112, 634] = £12(2) = 0, [t12,424] = #1%(y) = [y, 2] = [>4,£19),

as required.
Note that (d¥)(x) is the image of the following element of t4,

[t“‘, *w(_tl.d . 'Q.Alytl.l) + w(_”.«l - !2‘4 . '3"‘,“"‘)
== ¢(—tl‘4 _'2.4 _13.4 tl.-l + '2.4)]
[ll“, _w('l,Z,‘l.l) + w(tl.i 443 4 12’3,11'4) == 'J)(tl.z + 113+ 12.3’11,4 + 12,4)]
[tl“‘, _w(flﬂ,'l.l) 4 w(tlﬂ + fl's,fl"‘) o w(tl.3 + 12.3"1.4 + t2.4)]
[tl", _w(tz..?’tl.Z + 12.4) + ¢(t2‘3’ tl,?)]
[11‘4, lf)(l2'3, 11.2)] . [’l,/J(i 1.2, 12,3)’ tl,«l]_

Here in passing from the first to the second line we used the properties of central
elements in t3 and t;. For instance, t'2 +¢'* 421 is central in the Lie subalgebra
(isomorphic to tz) spanned by ¢, t** and ¢*#, In the passage from the second to
the third line we used the defining relations of the Lie algebra t;. For instance, in
the second term we used that t> has a vanishing bracket with ¢4 and ' 4 '3,
In the passage from the second to the third line we used a (3214) permutation of
the equation (15). Finally. in the last passage we again used the defining relations
of ty, and in particular the fact that £'** has a vanishing bracket with ** and with
t12 4 24 Tn conclusion, we have

d¥(z) = p(t2, %) ().
Similarly, (d¥)(y) is the image of the following element,

['.2.4, —¢(—'tl'4 = 12.4’ t2'4) R 1[’(—1"4 £ 12.4 2 13'4,{"'4 + ’3.4)
. \b(—il" . t2.4 i t3.«l’ tl.d + t2.4) + '»’)( __'_2.4 - t3.4’12.4)]
= [tz.‘i, _"/,(tl.?,t?.-l) AT ¢(tl.2 + 13 4 t2.3’ 124 4 t3.l)
22 ¢.(ll.2 + 113 4 t2.3"l,4 g l2.4) 4 w(t2,3, l2.4)]
= [t2'4, —¢(tl‘3,tl'2 K% tl.ﬂl) 4 w(tl.:!, tl.?) + ¢(t1'3,t2‘3 + 13.4) = ¢(t1’3, t2.3)]
. A oh (41,3 K § . R Ay * :
= [tZ-I, zvgt; 1,31424,'1 ‘)+l/)(tl3,f23+134) w(tl 2,t23)]
= (b, 29,249,

]

I

I
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Here we used the (1324) and (3124) permutations of equation (15) as well as equa-
tion (14) which implies ¥ (2, #>3) = ¢(t12,¢13) 4 (¢*3,¢%3). Again, the conclu-
sion is
d¥(y) = v(t"%,2%)(y).
Finally, we represent (dW)(z) as the image of the element
[t3.4’ ,w(_t 14 _ 12.4 a t8.4, 12.4 4= tﬂ.«l) s ‘u‘)(—tl"‘ - 12.4 - t3.~|’ t3.~l)
F ‘/}(_1_2.4 T2 l3.4!l3.4)]
— [t.'!.-t’ ,'p(’lﬂ 4 3 + t2'3, p24 + 13.4) e 'p(’l.? + 13 + 12'3,!3'4) + ¢(t2.3’ 134 )]
[t3.4, ,".')(tl.2 + tl.3’ t2.~l + t3.-l) - w(tl.3 - t2'3.t3'4) XX w(t2‘3,t3.4)]
= [til.‘l' —'l/)(tl'z,t2'3) 4 w((l.Q’t2.3 T t2.~l)] = [w(tl.Z’ t2'3), ¢3.~l]’
where we used the equation (15) (no permutation needed). We conclude
d¥(z) = p(t"?,27)(2),
and d¥ = (12, 122), as required.
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