Theorem 1.2.

There exist "universal quantization functors"
(i) $Q: H A_{\left\langle\Delta-\Delta^{o p}, S-S^{-1}\right\rangle} \rightarrow \overline{L B A_{\langle\delta\rangle}}$ such that for any Lie bialgebra \mathfrak{a} over k $\widehat{Q}\left(\mathfrak{a}_{h}\right)=U_{h}(\mathfrak{a}) ;$
(ii) $Q^{q t}: Q T H A_{\left\langle\Delta-\Delta^{o p}, R-1, S-S^{-1}\right\rangle} \rightarrow \overline{\text { QTLBA }_{\langle r\rangle}}$ such that for any quasitriangular Lie bialgebra \mathfrak{a} over $k \widehat{Q^{q t}}\left(\mathfrak{a}_{h}\right)=U_{h}^{q t}(\mathfrak{a})$, where $U_{h}^{q t}(\mathfrak{a})$ is the quasitriangular quantization defined in Section 6.1;
(iii) $Q^{Y B}: Q Y B A_{\langle R-1\rangle} \rightarrow C Y B A_{\langle r\rangle}$ such that for any classical Yang-Baxter algebra (A, r) over k one has $\widehat{Q^{Y B}}\left(A_{h}\right)=(A, R)$, where R is constructed from r as explained in Chapter 5.

What mans? What means in topology?

(i) $Q: H A_{\left\langle\Delta-\Delta o p, s-s^{-1}\right\rangle} \longrightarrow \overline{L B A_{(d)}}$

1. Lie bialgebras. In this case the set S consists of two elements of bidegrees $(2,1)$ and $(1,2)$ (4ilunine $\mathcal{C}=$ LBA is $\mathcal{F}_{S} / \mathcal{I}$, where \mathcal{I} is generated by five relations - skew-symmetry and the Jacobi identity for the commutator and cocommutator and the condition that cocommutator is a 1 -cocycle. A Lie bialgebra in \mathcal{N} is an object with a linear algebraic structure of type LBA.
2. Hop algebras. In this case the set S consists of six elements of bidegrees $(2,1),(1,2),(0,1),(1,0),(1,1),(1,1)$ (the universal product, coproduct, unit, count, antipode, inverse antipode ${ }^{\prime}$, and the category $\mathcal{C}=\mathrm{HA}$ is $\mathcal{F}_{S} / \mathcal{I}$, where \mathcal{I} is generated by the relations coming from the axioms of a Hopf algebra. A Hops algebra in \mathcal{N} is an object with a linear algebraic structure of type HA.

Given bra 4 cobra can write prod k
co prod.
(ii) $Q^{\text {at }}: Q T H A_{\left\langle-0-0 \cdot, R-1, s-s^{-1}\right\rangle} \rightarrow \overline{Q T L B A_{\langle r\rangle}}$
2. Quasitriangular Lie bialgebras. In this case the set S consists of two elements of bidegrees $(2,1)$ and $(0,2)$ ((the universal commutator and classical r -matrix" ${ }^{\prime \prime}$), and the category $\mathcal{C}=$ QTLBA is $\mathcal{F}_{S} / \mathcal{I}$, where \mathcal{I} is generated by four relations skew-symmetry and the Jacobi identity for the commutator, invariance of $r+r^{o p}$, and the classical Yang-Baxter equation. A quasitriangular Lie bialgebra in \mathcal{N} is an object with a linear algebraic structure of type QTLBA.
4. Quasitriangular Hoof algebras. In this case the set S consists of eight elements
of bidegrees $(2,1),(1,2),(0,1),(1,0),(1,1),(1,1),(0,2),(0,2)$ ("the universal product, coproduct, unit, count, antipode, inverse antipode, R -matrix, inverse R -matrix" ${ }^{\prime \prime}$), and the category $\mathcal{C}=$ QTHA is $\mathcal{F}_{S} / \mathcal{I}$, where \mathcal{I} is generated by the relations coming from the axioms of a quaitriangular Hopf algebra. A quasitriangular Hopf algebra in \mathcal{N} is an object with a linear algebraic structure of type QTHA.

swats the ourdine was forgotten.
5. Classical Yang-Baxter algebras. In this case the set S consists of three elements of bidegrees $(2,1),(0,1),(0,2)$ ("the universal product, ulit, and r-matrix"), and the category $\mathcal{C}=$ CYBA is $\mathcal{F}_{S} / \mathcal{I}$, where \mathcal{I} is generated by the associativity relation and the classical Yang-Baxter equation. A classical Yang-Baxter algebra in \mathcal{N} is an object with a linear algebraic structure of type CYBA.
6. Quantum Yang-Baxter algebras. In this case the set S consists of three ele-
 and the category $\mathcal{C}=$ QYBA is $\mathcal{F}_{S} / \mathcal{I}$, where \mathcal{I} is generated by the associativity relation and the quantum Yang-Baxter equation. A quantum Yang-Baxter algebra in \mathcal{N} is an object with a linear algebraic structure of type QYBA.

