Bakalov-Kirillov on the Quantum Double of a Finite Group

October-06-10
9:55AM

F;Z/o (,\//'nJ Bﬂb/ﬂ/o V- k///‘,{/m/

http://www.math.sunysb.edu/~kirillov/tensor/tensor.html

3.2, Example: Quantum double of a finite group

We will give the simplest example of a modular tensor category  the category
of finite dimensional representations of the Hopl algebra D{(7). which is the quan-
tum double of the group algebra k[G/] of a finite group 7. It is interesting that
this example appeared in two seemingly unrelated areas  the theory of characters
of reductive groups over linite Helds [L5, L6] and the orbifold constructions in
Conformal Field Theory [DVVV, KT].

Let us first fix the notation. Let 7 be a finite group. Recall that its group
algebra k[ over a lield k is a Hopl algebra with a k-basis {}, ¢ and

multiplication F Sy ey, ry e,
unit ¢ {the unit element of 7,
comultiplication Alr) =wxea red,
conit () =1,

anti ) — o1

antipode (r) =o'

This Hopl algebra is cocommutative. A representation of E[G7] is the

a representation of (. By Maschke's theorem, the category Repy k[(] of finite z

dimensional representations is semisimple. °
The Hopf algebra dual to E[(7] is isomorphic to the function algebra F(G) of

the group (. It has a k-basis {4, },c¢; consisting of delta functions:

; 1
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" (0

“_:; :Sh — t)._,“, h O,J

same as

for g =,

for g # x.

ds ()

It has

Ts s

multiplication g, hed,

unit 1=73 ;g

comultiplication Afd,) an':: o O g, g €@,
counit _-'([ﬁ'_,,‘] rﬁ'?_,..

antipode T(0y) = 0,1

A representation of F(G) is the same as a G-graded vector space (since {4, } 00
are projectors).

Applving Drinfeld’s quantum double construction [Dr3] it is easy to describe
explicitly the quantum double D(G) of k[(7]. As a vector space, D(G) = FIG) 2

k[G7]. Tt is & Hopt algebra with

multiplication (0, @ 2)(0n @ y) = dgaenldy @ 2y, roy.g,hel, 1L I .
unit 1= cady @, ¢ ﬂ -
comultiplication  A(d, ©ww) =3 (d;, @ x) @ (6, @), g.or e,

counit (g @ x) = e,

antipode V(g &) = 1,1

g1z &
The Hopf algebra D(() is quasitriangular with

o
R-matrix It = E:H._.(.-[fﬁ'.J ve)® (1@ g). d

vilih) 1o ST (WA

HW tow & s f/MJ

"9 ¢

Q_ Ts fhor kjc/)@ft(h’lbf
> 21, af/ﬂfs) Ca//@jw/)»//%vjé
oTh™ rips R /EW*C/@

(Of course, once we know the above formulas, they can be easily checked directly.) @ ‘I} ({Z.c,/ﬁ b AC?l,'oV] cé‘

Note that F{(/) and k[G] embed in D(G) as k-algebras and D{G) is their

semidirect product:

D&
mq[ )ﬂ,z

(3.2.1) D(GY = FIG) = k|G,
with
(3.2.2) o, r ! Oy lor gore Gl

Let Repp D) be the category of finite dimensional representations of D((7)
as a k-algebra. By the above remarks, a representation V' of D(() is the same as
a G-module with a G-grading V7 = @'g:c; Vy satisfying oV, C Voo, 2,9 € G
In other words, objects of RepyD(() are finite dimensional G-equivariant vector
bundles over (. We will show that the category Repy D{(7) is semisimple and will
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k[G7]. Tt is & Hopt algebra with

multiplication (05 @ x)(0n @ y) = dga enldy @ xy), roy.g,hel,

unit 1= cady @,

comultiplication ~ A(d, @x) =3, (8, @ &) @ (8, @ ), g, r e,
counit g(dy 2 x) = dye,

antipode V(b @ &) = 6141, R '

The Hopl algebra D(() is gquasitriangular with

R-matrix R=3% culd; mejm(1eg)

(Of course, once we know the above formulas, they can be easily checked directly.)
Note that F{(/) and k[G] embed in D(G) as k-algebras and D{G) is their

semidirect product:

(3.2.1) D(GY = FIG) = k|G,
with
(3.2.2) o, r ! Opger lor gor e

Let RepyD(G) be the category of finite dimensional representations of D(()
as a k-algebra. By the above remarks, a representation V7 of D((7) is the same as
a G-module with a G-grading V7 = @g_‘.(: Vy satisfying oV, C Voo, 2,9 € G
In other words, objects of Repy D) are finite dimensional (-equivariant veetor
bundles over (. We will show that the category Repy D(G) is semisimple and will
deseribe its simple objects.

For V€ Ob RepyD((7) and v € V7 the submodule generated by v is

D(Ge = Y KGo,e =Y P =Zig)s,e,
gEG

gEl rgr—1ch

where 7 denotes the conjugasy class and Z(g) the centralizer of g in . Note that
E[Z{g)]0,v is an irreducible representation = of Z(g). Hence

Vo = k[G]d,0 = EB r,

rgr— 1€y

(3.2.3)

is an irreducible D(G)-module which depends only on the conjugacy class 7 and
the isomorphism class of the irreducible representation = of Z{g). The action of
D(G7) on V5 ¢ is given explicitly by:
(3.2.4) (0p @ h){wv) = 0f pogp—1,-rhae for fhoreG, ven

This shows that the category RepyD((7) is semisimple with simple objects
V5.« labeled by pairs (7, 7), where 7 € G is a conjugacy class in G and 7 € Z(g) is
an isomorphism class of irreducible representation of the centralizer Z{g) ol some
element g € § (7 is independent of the choice of g).
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3.2, EXAMPLE: QUANTUM DOUBLE OF A FINITE GROUP il

In what follows we will use the orthogonality relations of irreducible characters
of a linite group G

1 -
(3.2.5) i ‘szllr.-.‘lﬁh] tryr(hg) = :t:i?; O s el ged,
. 1 _ _ " :
(3.2.6) Tz S tree(g)tea(h) =g hgeG.
0 we@

Also recall that |g]|Z(g)| = |G).

Tueorenm 32,1, Reppy DG is a modular tensor category with simple objects
Vox labeled by (3,7), G G, 7 € Z(g) (g € 5). We have:

(3.27) V2, =l .
- ' try(g)
(3.2.8) "_T;.-.|.:_-g_'.:|"| r)f?..ul.if.-_’..-u'] tr, (e Y’
1
(B29) s 7 = T Y. tralhg’ b tee(h g .

1Z@NZ(g) &=,
hy'h .".—Z._f.rl

The numbers p= from (3.1.7) are equal to the order of (.

The s-matrix (3.2.9) was first introduced by Lusztig [L5] (see also [L6, L7])
under the names “non-abelian Fourier transform” and “exotic Fourier transform™.
Then it appeared in [DVVV] and (KT in connection with “orbifolds”. Dijkgraal,
Pasquier and Roche [DPR] considered a generalization of the above construction
which is also related to orbifolds. They introduced a quasi-Hopf algebra DG,
depending on a cohomology class ¢ € HY(G,U{1)), which reduces to D(G) when

c=1.

Proor oF THEOREM 3.2.1. Eq. (3.2.7) follows easily from the definitions (note
that Z(g ') = Z(g) and tro. (h) = tra(h ')).

To prove (3.2.8), we compute the twists # using the results of Proposition 2.2.4
and Lemma 2.2,

. Since 72 = id, it follows that 4y = id, ef. (2.2.11). Hence,

(3.2.10) B=u'=Y s eh

heds

As g is central in Z(g), it acts as a constant = try(g)/ try(e) on the representation
7 hence by (3.2.4), 5. = tralg)/ tra(e).
To prove (3.2.9), we will use (3.1.2). We compute for v, o' € Giv e 7*, o' € 7"

iy orve (v ') = Al V) (ae @ 2"

= ) (0, ©h)(wv) © (p, @ h)(2"0")
hedd
hyha=h

. . . )
E ’)h,.h.rg Lp—1j Vha -r\,“_;“_.-q.-,_.- iy hae'
hedd

hiha=h

. \ 1
= (frv® fa'v'), where f=xg 'x 'a'g's’ .
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whiclh proves (3.2.9).
The computation of p™ is straightforward (using (3.2.5, 3.2.6)). and is lelt to
the reader. A
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