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UNIVERSAL REPRESENTATIONS OF BRAID AND
BRAID-PERMUTATION GROUPS

BARBU BERCEANU* AND STEFAN PAPADIMA®*

ABSTRACT. Drinfel'd used associators to construct families of universal rep- V\O'{_ Cﬂ#/
resentations of braid groups. We consider semi-associators (i.e., we drop the [\ ow/ w
pentagonal axiom and impose a normalization in degree one). We show that (Ar\

the process may be reversed, to obtain semi-associators from universal represen- e M <
tations of 3-braids. We view braid groups as subgroups of braid-permutation M fbﬂl'/‘ }
groups. We construct a family of universal representations of braid-permutation o (a

groups, without using associators. All representations in the family are faithful,
defined over @ by simple explicit formulae. We show that they give universal
Vassiliev-type invariants for braid-permutation groups.

1. INTRODUCTION

1.1.  In the foundational paper @ Drinfel'd introduced and proved the existence M{ ¢ /Q} )
of associators, that is, formal series in two noncommutative variables with coef-
ficients in a characteristic zero field K, satifying certain axioms. These objects
constitute the core structure leading to many important results. They play a key
role in the quantization of universal enveloping algebras. There is a deep connec-
tion between associators and the absolute Galois group. They appear in an essen-
tial way in the construction of universal finite type invariants in low-dimensional
topology. See [6], and also Birman’s survey [2] and the monograph [10] by Kassel.

One also finds in [6] a bridge between associators and universal representa-

tions of Artin braid groups into braid algebras. These algebras (defined over Z)
are semidirect products of symmetric group algebras K[¥,,| and infinitesimal Artin
algebras A,, (alias complete algebras of horizontal chord diagrams on n strings).
Given an associator, Drinfel'd constructs a family of so-called universal representa-
tions of the braid groups into the corresponding braid algebras, satisfying certain
natural properties. See sections 2 and 3 for details.
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2 B. BERCEANU AND §. PAPADIMA

We consider in this note semi-associators, i.e., associators not required to verify
the pentagonal axiom, which are still normalized in degree one; see Definition 3.2.

Theorem 1.1. There is a natural bijection between semi-associators and universal
representations of 3-braids.

In the above bijection, the universal 3-representation coming from an associator
coincides with the one constructed in [6]; see Theorem 4.3 and Remark 4.8. In
other words, the Drinfel'd approach may also be used to obtain semi-associators
from universal representations of 3-braids.

1.3.  The Drinfel'd representations from [6] are faithful, as follows from work by
Kohno [12]. There is however a practical inconvenient. Known explicit formulae
for C-associators involve complicated multiple zeta values, see for instance [10,
Ch. XIX]. Over Q. there is no example of explicitly described associator, to our
best knowledge. To remedy this, we view Artin braid groups inside the welded
braid groups introduced and studied by Fenn-Rimanyi-Rourke [8] (also known as
braid-permutation groups).

We propose analogs of braid algebras (also defined over Z), in this enlarged
context, namely oriented braid algebras; see Definitions 5.2 and 5.1. These are
semidirect product algebras, O, x Q[,]. where the oriented Artin algebra O, is
a cousin of A, obtained from oriented horizontal chord diagrams. There is also
a natural notion of universal family of representations, of either welded or Artin
braid groups into oriented braid algebras; this notion is defined by conditions (1)
and (3) from Theorem 6.1. We prove in Theorem 6.1 the following.

Theorem 1.2. There is a universal family of faithful representations, for both
welded and Artin braid groups, into oriented braid algebras. These representations
are defined by explicil formulae, over Q.

The key point in the construction of associators and Drinfel'd representations
is the analysis of the corresponding KZ-monodromy. The required flatness of KZ
connexion forms is intimately related to thepropert_v of pure braid
groups, in the sense of D. Sullivan [22]; see Section 5 for details.

The analog of pure braid groups, in the context of welded braids, are McCool's
groups from [14]. Our key step in proving Theorem 1.2 is to show that the Mc-
Cool groups are 1-formal. and to compute their rational Lie algebras associated to
the lower central series filtration. This is done in Theorem 5.4. See also Cohen-
Pakianathan-Vershinin-Wu [5] for related results, in particular for the determi-
nation of the integral associated graded Lie algebra of upper-triangnlar McCool
groups. New information on upper-triangular McCool groups (which are proper
subgroups of McCool groups) may be found in Remark 5.5.
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UNIVERSAL REPRESENTATIONS OF BRAIDLIKE GROUPS 3

1.4. It is well-known that Drinfel’d representations have the following geometric
interpretation, see for instance [19, Section 1]. Consider on rational group rings
of Artin braid groups the multiplicative Vassiliev filtration, obtained by resolving
singularities of singular braids. On braid algebras, there is the natural multiplica-
tive filtration coming from the complete filtration of infinitesimal Artin algebras
A,.. Drinfel'd representations are universal finite type invariants for the corre-
sponding Artin braid groups. This means that their canonical extensions to group
rings respect the above filtrations, and induce a multiplicative isomorphism at the
associated graded level.

Our explicit representations of welded braid groups into oriented braid algebras
from Theorem 1.2 have the same geometric flavour. On rational group rings of
welded braids, we consider the multiplicative filtration obtained by resolving sin-
gularities (welds), as explained in §6.2. The complete filtration of oriented Artin
algebras O, naturally induces another multiplicative filtration. on oriented braid
algebras. The result below is proved in Section 6.

Theorem 1.3. The canonical extensions to group rings of the representations of
welded braids into oriented braid algebras, constructed in Theorem 1.2, respect the
filtrations described above, and induce a multiplicative isomorphism at the associ-
ated graded level.

2. DRAMATIS PERSONAE

Let us present the objects that inspired our study: braid groups and braid
algebras.

2.1. The braid and pure braid groups were defined and studied by E. Artin [1].
The geometric braid group on n strings is isomorphic to the group B, generated
by a1,...,0,-1. with defining relations

(1) 0i0; =0,0;. for 2<|i—jl|;
0is10i0is) = 0,0;410;, for 1<i<n-2

Using the natural morphism onto the symmetric group ¥, o; — s; := (i,1 + 1),
Artin identified its kernel with the subgroup of pure braids:

(2) 1—=PB,—=B,—=,—1.
As a set of generators for PB,, we choose the elements

aji = 0,‘-10.‘_2"'0)'4.10? J‘J, oo, 1<j<ign.
We also have a canonical embedding

(3) B,y —B,, givenbyo,—o,.i=1,..., n—2,
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1 B. BERCEANU AND §. PAPADIMA

and an obvious stability property, expressed by the commuting diagram
l = PBy = By = E,q = 1

| l |
l = PB, = B, = X, =1

See also [15] for complete proofs.

2.2. To define the corresponding braid algebras, we need complete topological
Hopf algebras and complete topological Lie algebras; see [21] for details. Consider
the tensor algebra, i.e., the free associative algebra with coefficients in a field K
of characteristic 0, Tz (A;,.... A,), where deg A; = 1 and the comultiplication is
defined by AA; = A, @1+ 1 A;. We denote by K((A,,...,A,)) the completion
of this Hopf algebra, with respect to the degree filtration. Its primitive part is
the complete free Lie algebra, L{A,...., A,) = PrimK((A,,..., A,)). We denote
by T>*(A,, ..., A,) and L>%(A,,...,. A,) the corresponding complete filtrations.
We denote the congruence modulo these ideals by =;.,: for instance, [ =, ¢
means that f and g have the same linear part and the same constant term, if
[.9 € K((Ay,..., A,)). Similar considerations apply to arbitrary complete Hopf
and Lie algebras.

Kohno [11] and Drinfel'd [6] introduced infinitesimal versions of (pure) braid
groups.
Definition 2.1 ([11]). The infinitesimal Artin Hopf algebra is the complete Hopf
algebra given by the presentation:

An=K((tij = t;, 1 i # 5 < n | [t tatti] =0, [tij, ] = 0 if {7, j}N{k,1}=0)),

where [u,v] := uv — vu denotes the algebra commutator. The infinitesimal Artin

Lie algebra is the complete Lie algebra given by the presentation:

Po=L{tiy = tji 1 S i #j <n | [ty ti+ ti] =0, [tij, t] = 0if {3, 5} 0 {k, 1} = 0)
These two algebras determine each other: A, = UP, and P, = Prim(A,,).

There is a natural left action of the symmetric group Y, on the above algebras,
defined by #(ti;) = tx@yagj)- We shall use the exponential notation 7(P) = *®.

For instance, if # = ijk := l 2 5 ) € Y3, we denote 7(®) by ¥,

j ok
Definition 2.2 ([6]). The braid algebra A, x K[%,] is the semidirect algebra
product, that is, A, ©K[3.,]. with twisted multiplication given by (a®@z)-(boy) =
a-*boxy.

The algebra A, x K[3,] contains as a multiplicative subgroup the semidirect
group product exp P, » ¥.,,. We thus have split exact sequences of groups,

l—=expP, —expP, x¥, =%, =1,
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UNIVERSAL REPRESENTATIONS OF BRAIDLIKE GROUPS

=

together with compatible canonical embeddings,

exp Pn 1 X b 1 < exp Py, X ):,, =

2.3.  We will start by considering families of representations,
Pn - Bn = -Au xR KIXH] )
satisfying the following four natural properties, extracted from the work of Drin-
fel'd [6].
e Exponential type. The representation p, factorizes through the expo-
nential subgroup:

B, .. expPy % %,
(E) \
p'l
A, xK[%,]
e Symmetry. The diagram below commutes:
B, Pn expP, %3,
):" >:"
e Stability. One has commutative diagrams
Bu 1 et exp P,.,l b ).:,,, 1
(s) \ J
Bn L’ exp PII bl >:n

e Normalization. The images of the generators (o;);=; - satisfy

Liji+1
5

Remark 2.3. From (E), (3J) and (N), we obtain the following formula for the pure
braid generators (abbreviating from now on u © id to u):

(N) pn0i = u; @ 8;, where u; €expP, and wu; =51+

PnQrji = 1 + "lj .
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6 B. BERCEANU AND §. PAPADIMA

Indeed, p,o? = u; % w; =5 (1 + "—.‘2’1)2 =, 1 + t;+1. Hence, p,aj; = us- p,,nf-
sluls, "p,,o‘}'. where u € expP,. s = s; 1854y and p(0; -+ 0j41) = us. It
is easy to check that “p,,trf- =, 1 + t;;, which proves our claim.

3. DRINFEL'D ASSOCIATORS AND DRINFEL'D REPRESENTATIONS

“ollowing Drinfel'd [6], we recall a method for constructing representations hav-
ing the four properties described in Section 2, based on the notion of associator.

3.1. The complete Hopf algebra K((A, B)) has a natural involution s: *A = B,
*B = A. Given ® € K((A, B)), set ®; := ®(l12,l23) € Aj.

Definition 3.1 ( [6]). An element ¢ € K((A.B)) is called an associator if it
satisfies the following conditions :

(AE) & = exp(y), with ¢ € L>1(A, B)

(AS) P - !

(H1) exp(4atha) = BIgrl . exp(W) - 239, . exp(42) - &7
(H3) exp(Uszta) = 312¢, . exp(4) - B0, " - exp(B) - b

(P)  ®(tia tas + o) Pltrs + tas, tas) = Bltas,t3a)®(tra + i, oy + taa)P(t12, tas)

The first two equations must hold in K((A, B)). the next two in Aj. and the
last in Ay. Drinfel’d proved that associators exist; see [6, Proposition 5.4].
Definition 3.2. We will say that ¢ € K((A, B)) is a semi-associator if it satisfies
the properties from Definition 3.1, except (P).

Let us remark that, in the definition of a semi-associator , (H1) and (H3) are
equivalent; see [6, p. 848)].
3.2. Drinfel’d [6] used associators to construct families of representations, {p, :
B, — A, x K[%,]}. defined by the formulae:
) { o — exp(8)@s;

= L s 9
Ois1 = BT ciliintiier) ™" - (exp(252) ® 8i) - B(X; i tis bisin)

Theorem 3.3 ( [6], [20]). If ® € K((A, B)) is an associator , the above formulae
define representations

Pn By — Ay xK[3,],
satisfying the properties (E), (%), (S). (N) from Section 2.

Proof. The only new claim concerns the normalization property. This may be
checked as follows. First, it is straightforward to deduce from (4) that p,o; = w;@s;,
where

(5) u; = ‘l’(z tyitiigr) ™" eX[’(’;"';Ll) 2 "‘P(Z Liis Liiv) -

Jj<i J<i
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UNIVERSAL REPRESENTATIONS OF BRAIDLIKE GROUPS 7
Axiom (AE) implies that ¢ =, 1, which yields property (N). (]
Another important feature is that all Drinfel'd representations (4) are faithful.
This follows from (X}, [6, p. 848], and [12, Proposition 1.3.3].
4. UNIVERSAL REPRESENTATIONS OF 3-BRAIDS

We may now give the proof of Theorem 1.1.

4.1. Given a representation p : By — Az x K[¥3], denote by g/ its restriction to
B, (embedded in By as explained in §2.1).

Definition 4.1. A representation p as above is called universal if the family {p, p'}
satisfies properties (E), (3), (S) and (N) from §2.3.

The set of universal representations of B; will be denoted by Urep (By).

Lemma 4.2. There is a unique representation p : By — Ay % K[¥,] that satisfies
conditions (E), (3) and (N), given by p'oy = oxp(‘—gl) ® 8.

Proof. Properties (E) and () together are saying that p'e; = exp(At)2) © s,, with
A € K. By (N)./\=%. (W]

We parametrize representations p : By — Aj xK[X;,], using another presentation
of B, derived from (1):

(6) B3=<(71.A|0'1A(71 AOI lA).

where A = 0,090,. The fundamental element A has the property that its square
A? generates the center of the braid group [4]. We also consider the element of P;,
T'= %(I.,f_» t ty3 + lo3) and observe that

) Py=K-TxL(A:=t1,Bi=tn),
as Lie algebras. In particular, the center of the Lie algebra Py is K- T'.
4.2. Let W = exp(¢’) be a group-like element of K((A, B)). Set

(8) poy = exp(4R) @ 5y € exp(Py) x X,
pA = exp(T) - V7' © 321 € exp(Ps) x X3

Theorem 1.1 is a consequence of the following result.

Theorem 4.3. If ¥V is a semi-associator (in the sense of Definition 3.2), then (8)
defines a universal representation p € Urep (Bs) (in the sense of Definition 4.1).
Conversely, every universal representation of By has a unique parametrization of
the form (8), where ¥ is a semi-associator .

y L } - OLVI'ou;ﬁj C\,{M)

N= b A{//‘///JZ ﬂ l’lL’)[(/ my fo CT

> po= (T

, %
Sy, aspoader” @n b rud from s brades
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8 B. BERCEANU AND §. PAPADIMA

We start by noting that Definition 4.1, Lemma 4.2 and presentation (6) readily
imply that p € Urep (Bs) if and only if p is of the form (8), with ¥, replaced by
& € exp(P;), and the following two properties hold:

(YB) pA = pay - poy - poy
(expressing the fact that p is a representation) and

t
(N2) po2 = Uy @8y, with us =, 1+ %

Lemma 4.4. In the above setting, (N2) is equivalent to log ® =, 0 in Ps.
Proof. Since A = 00901,
t e . 1
poy = (exp(-——;—z) @ s;) - (expT - ¢~ 2 321)- (exp(——g) @ 81).
It follows that

(9) poy = vxp(—%z) cexpT 23 ¢! 'exp(—%‘) ® 8y.
Condition (N2) becomes (1 + %) 213 ¢! =, 1 + &, whence the result. O

By resorting to (7), we infer that & = ¥,, with W = exp(¢’) and ¢» € I:”(A. B).
The proof of Theorem 4.3 is thus reduced to showing that the Yang-Baxter equa-
tion (YB) for @ is equivalent to properties (AS) and (H) from Definition 3.1 for
W. To prove this equivalence, we need a preliminary result.

Lemma 4.5. Assume {j;; € A, h<icj<n are such that p;; =5 ;. Denote by V

the K-span of {t;;}. Then, for an arbitrary t € A,. we have an expansion t =
k

k>0 Uk, with the property that vy € ve=V..V, fork >0, andvy € VO :=K-1.

Proof. By induction on k,

0=t — z Ui =pa Z k — monomials in (t;;) = E k — monomials in () .

i<k
which completes the induction step. 0
Next, we use the above lemma to deduce the following.

Lemma 4.6. Fquation (YB) for ® implies condition (AS) for V.

Proof. Knowing that p is a representation and A®? € PBy is central in By, we infer
that [pA?, paj;] =0 in Ay, for 1 <i < j < 3. We also know from Remark 2.3 that
pai; = 1+ pij, with g;; =s t;;. Due to Lemma 4.5, we obtain that pA? is central
in A3. Hence, pA? = exp(hT), for some h € K: see (7). On the other hand,

pA? = playzaggars) =5 14 2T,
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UNIVERSAL REPRESENTATIONS OF BRAIDLIKE GROUPS 9

again by Remark 2.3. This forces h = 2. Therefore, exp(?’l ) = (pA)? = exp(2T) -
=130 91 a5 follows from (8). Finally, since ® = W,, 31d — &~ translates to
W = P! as asserted. 0

4.3. Recall that axioms (H1) and (H3) from Definition 3.2 are equivalent. With
this remark, the Lemma below will finish the proof of Theorem 4.3.

Lemma 4.7. The Yang-Baxter equation (YB) for ¢ is equivalent to the hexagonal
ariom (H3) for ¥.
Proof. First, we may rewrite (9) in the form
por = exp(LL2) 2347 exp(2) @ 3
since [tyg, tyg + t23] = 0. Tog('th(-r with (8). this leads to
pox- poy - poy = exp(H2 1) 25 41 exp(HEI) 12 1 exp(~2) 0 321,

Comparing this with (8), we find that (YB) is equivalent to

(10) exp(%l)-qr' 23 g1 -exp(’;‘i‘—;-’ﬂ) 132 g1 -exp(—'-";—*).

or

(11) exp(H12) =13 . exp(L2) - 71 - exp( ) .

Applying s; to (11), we find the equivalent form

(12 exp(TE) 1 g exp(2) 19 071 exp(E) - @,

which is precisely coudltlon (H3) for . O

Remark 4.8. It is worth pointing out that the representation p corresponding
to a semi-associator W, in our Theorem 4.3, is given by (4), as in the Drinfel'd
construction of representations coming from an associator.

To check this, start with a group-like element W € K((A, B)) and set ® = W,.
For i = 2, (4) gives

(13) poy = 7" - exp(= z’) 24

Comparing this with (9) we find that we must verify the equality
(14) ¢! exp(—-) 32 g — oxp (B2 hs ’ 03 1y 28 e 't’xp(—-!;j),
that is,
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10 B. BERCEANU AND §. PAPADIMA

By applying s;, we put (15) in the equivalent form
tis + 1 P tiz, - t
(16) exp(2 2 ; 2y =13 g1 -exp(%“) Bl exp(?m) -
Finally, (16) above is seen to coincide with axiom (H3) of the semi-associator
W, by using the equality **'® = &=, which corresponds to axiom (AS).

5. BRAID-PERMUTATION AND BASIS-CONJUGATING GROUPS

We examine analogs of the braid groups and braid algebras from Section 2.

-

5.1.  Denote by F, the free group generated by ., ..., 2. The braid-permutation
group, BP, C Aut(F,). was investigated in detail in [8]. Its elements are the
automorphisms a € Aut(F,,) acting by

(17) a(x;) = y,-“r,(,v,y,v , for 1<i<n,
where y; € F,, and s € ¥, and the group product is composition of automorphisms.

The abelianization homomorphism, Aut(F,) — Aut(Z"), induces a short exact
sequence,

(18) 1-=BC,—BP,—%,—1,

naturally split by the permutation action of ¥, on {xy,...,x,}.

The following presentation of BC,. also known as the McCool group of size n.
was found in [14]. For 1 < i # j < n, denote by a;; the automorphism of F,, which
sends z; to 2 'z;x; and fixes z for k # i. Then BC, is generated by {ai;}1<izj<n.
with defining relations

(1) (ap.ay) =1, Vi<i#j#k<n;
(19) (IT) (ajj.apay) =1, YV1<i#j#k<n;:

(111) (aijj.aum) =1, Vi<i#j#k#1<n,
where (x,y) := xyxr~'y~" stands for the group commutator. It is easy to check
that

(20) Sﬂ,'js_l = [l,(,')_,u) s

forall 1 <7# j < nands e, Incondensed form, BP, = BC,, x 3.,: see also
[5]-
As noted in [8], B, embeds in BP,,; more precisely,
(21) 0i = i85, for 1<i<n.

Clearly. the sequences (2) and (18) are compatible with this embedding. In par-
ticular, PB, — BC,,.
We also have a canonical embedding,

(22) Bpll—l B BP" .
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UNIVERSAL REPRESENTATIONS OF BRAIDLIKE GROUPS 11

defined by a(x,) = x,, for a € BP,_,, and commutative diagrams

Bn 1 = Bn

(23) 1 l
BPn-l — B'P,,

Finally, the projections of braid-permutation groups onto symmetric groups from
(18) are compatible with stabilization (22), like in the case of braid groups: see the
end of §2.1.

5.2.  We describe now the analogs of Artin and braid algebras from §2.2.

Definition 5.1. The oriented Artin Hopf algebra is the complete Hopf algebra O,
obtained from Q((v;; | 1 <i# j < n)) by imposing the relations

(1) [vikvp] =0, Vi<i#Fj#Fk<n;
(I1)  [vijvac+vp] =0, V1<i#j#k<n;
(I11) [vy,vu] =0, Vi<i#j#k#l<n.

The associated graded oriented Artin Hopf algebra (with respect to the canonical
complete filtration of O,) is denoted by O} = @500k, It is a Hopf algebra with
grading, obtained as the quotient of Tg(v;;). graded by tensor length, by the above
relations (I)-(III).

The oriented Artin Lie algebra is the complete Lie algebra £,, := Prim(O,). the
quotient of L(v;;) by the relations (I)-(III). The associated graded oriented Artin
Lie algebra (with respect to the canonical complete filtration of £,,) is denoted by
L, = @1 LE. It is a Lie algebra with grading, obtained as the quotient of the
free Q-Lie algebra L(v;;). graded by bracket length, by the relations (I)-(III).

There is a natural left action of ¥, on the algebras O, = UL, and LC,,, defined
on generators by "vi; = vx().(;). in exponential notation.

Definition 5.2. The oriented braid algebra O, x Q[3,] is the semidirect algebra
product, O, 2Q[%,,], with respect to the above ,,~action on O,, (where the twisted
multiplication is as in Definition 2.2).

The algebra O,, x Q[3,] contains as a multiplicative subgroup the semidirect
group product exp £,, x .,,. We thus have split exact sequences of groups,

l—expl, —expl,x¥, =%, —1,
together with compatible canonical embeddings,

expLlu—1 X ¥,y —expl, x,.
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12 B. BERCEANU AND §. PAPADIMA FT[W EGJ JQ,F-
TI:O/'

W/— L/”L/J{v

5.3.  We may now define our analogs of Drinfel'd representations. Send a;; to
exp(v;) € expL,, for 1 < i # j < n. The defining Lie relations of £, from
Definition 5.1 readily imply that the defining group relations of BC,, from (19) ar
respected. Consequently, we obtain a representation,

(24) Hn: BC" — exp C,, Ou .
It follows from (18) and (20) that
(25) R, @id: BP,, — expL, x %, C O, x Q|%,]

is a representation of the braid-permutation group BP,, into the oriented braid
algebra O, » Q[,], having the exponential property (E) from §2.3.

54. As is well-known, the existence of representations, p,: B, — A, x Q[¥,].
satisfying properties (E). () and (N) from §2.3. is intimately related to formality
properties of ordered configuration spaces of C and of their fundamental groups,
PB,,. To obtain the same formality property for the McCool groups BC,,. we turn
to a review of Malcev completion, following [21. Appendix A].

A Malcev Lie algebra is a rational Lie algebra E, together with a complete,

descending Q-vector space filtration, { . [}, 5. such that:
(1) F,E = E;
(2) [FE, F,E] C FoiiE, for all r and s;
(3) the associated graded Lie algebra, gri.(E) = @,., F.E/F.«1 E. is gener-
ated in degree = = 1. -
For example, the canonical complete filtration of £,, makes it a Malcev Lie algebra,
with gri-(L,) = L;,. as Lie algebras; see Definition 5.1.

Let G be a group. The lower central series of G is the sequence of normal
subgroups {I'tG}i>1. defined inductively by I'G = G and I'hioyG = (I'iG,G).
Observe that the successive quotients I'yGi /'y, G are abelian groups. The direct
sum of these quotients, gri-(G) := @ 'hG/lky G is the associated graded Lie al-
gebra of G. The Lie bracket is induced from the group commutator. Consequently,
grf(G) is generated as a Lie algebra by gi}.(G).

A group homomorphism, x: G — exp E, where E is a Malcev Lie algebra,
induces a degree zero morphism of Lie algebras, gr*(x): gri(G) @ Q — gri(FE).
If gr*(x) is an isomorphism, & is called a Malcev completion of G. There is a
functorial Malcev completion, xg: G — exp Eg. where Eg is called the Malcev
Lie algebra of GG. If k is another Malcev completion, there is an isomorphism of
complete Lie algebras, [ : Eg — E, such that x = exp(f) o . For example, the

Malcev completion of F,,, the free group on zy,.. .. r,, is given by the tautological
representation, ,: F, — expL{xz,,..., x,). sending each x; to exp(x;).
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UNIVERSAL REPRESENTATIONS OF BRAIDLIKE GROUPS 13

Let G = (&1,...,&n | wn,...,wy) be zt\ﬁnit(-ly presented group. Define the
Malcev Lie algebra E to be the quotient of L(z....,x,) obtained by imposing the
relations {log(k,(w;)) = 0}. It follows from [16, Theorem 2.2] that the tautological
homomorphism,

(26) K:G —expk,

/, 15 a Malcev completion.
A} Following D. Sullivan [22], we will say that a finitely presented group G is 1-
]"' (:5 " formal if the Malcev Lie algebra Eg is quadratic, that is, obtainable from a free
complete Lie algebra L(z....,x,) by imposing homogeneous relations of bracket
length two. For example, the pure braid groups PB,, are 1-formal, see Kohno [11].

5.5. It follows from the construction of the functorial Malcev completion r¢ [21.
Appendix A] and a result on /-adic filtrations of group rings (3, Proposition 2.2.1]
that any Malcev completion s of a residually torsion-free nilpotent group G is
faithful, if G is finitely generated. By definition, GG has the above residual property
if all non-trivial elements of (G are detected by homomorphisms G — N. where
N is a torsion-free nilpotent group. Consequently, this property is inherited by
subgroups.

We are going to derive the faithfulness of our representations (24) from a general
result about residual torsion-free nilpotence of Torelli groups. The Torelli group
T¢ of a group G is

T :={a€ Aut(G) |a=id mod I,G}.
It is endowed with the decreasing filtration
FTc :={a € Aut(G) |la=id mod I',,,G}
(s > 1), which has the property that I',7; C F.T¢;, for all s.

Proposition 5.3 ([9]). Assume MiI'hG = {1} and gr{(G) is torsion-free. Then
the Torelli group Tg; is residually torsion-free nilpotent.

Proof. The result is stated by Hain without proof in [9, Section 14]. For the benefit
of the reader, we are going to give a proof. By the first assumption on G, any non-
trivial element, id # a € Tg, is detected by the natural homomorphism, T — Tg, .
for some k, where GGy := G//I'.G is nilpotent and inherits the second hypothesis
from G. It will be thus enough to assume that moreover G is nilpotent and to
prove that in this case T; must be torsion-free nilpotent. Nilpotence follows from
the obvious fact that Fp_,T; = {id}, if I''G = {1}. Torsion-freeness may be
verified by induction, as soon as we know that all quotients, FT¢/F..,Tc. are
torsion-free. By [18, Proposition 2.1|, the above Torelli filtration quotient embeds

2008 Page 13



03 1

IMKS )

14 B. BERCEANU AND §. PAPADIMA

into the degree s derivations of the associated graded Lie algebra gri-(G), which
has no torsion.

Note that the groups G from Proposition 5.3 are themselves residually torsion-
free nilpotent. The hypotheses of the proposition are satisfied by free groups,
see [13]. This implies the residual torsion-free nilpotence of BC, C Tz, ; see (17)
and (18). We may thus recover the well-known residual torsion-free nilpotence of
PB, < BC,. The proposition also applies to iterated semidirect products of free
groups with trivial monodromy action in homology, e. g., fundamental groups of
fiber-type arrangements of complex hyperplanes; see [7|.

5.6. We are ready for the main result of this section.

Theorem 5.4. The McCool groups BC,, have the following properties.
(1) The group BC,, is 1-formal.
(2) The Lie algebra with grading gri.(BC,) ©Q is isomorphic to the Lie algebra
L; from Definition 5.1.
(3) The homomorphism R,, from (24) is a Malcev completion.
(4) The above representation R,, is faithful.

Proof. Part (l).AB_v (26) and (19). the Malcev Lie algebra of BC,, is isomorphic to
the quotient of L(v;; | 1 < i # j < n) by the relations

(1) log((exp(vir). exp(vjk))) . ViSi#Fj#k

= <n;
(1) log((exp(vij), exp(v) - exp(vn)), ¥ 1<i#j #k <ni
(111) log((exp(vi;). exp(vir))) , Vi<i#Fj#Fk#I<n
Using [17, Lemma 2.5], the above relations may be replaced by
(I [vicsvjn] Vi<i#j#k<n;
(11')  [vij. log(exp(uik) - exp(vjx))]. V1<i#j#k<n;
(I11) [vi.vw) Vi<i#j#k#l<n.

Due to (/’). (11') becomes
(I’”) [U,'J', Vix + l'jk] P
Since all relations (/”), (/1”) and (111") are quadratic, we are done.

Part (2). We have seen that Ege, = L,: see Definition 5.1. By the defining
property of the Malcev completion of a group (see §5.4). gri(BC,)2Q = gr}-(L,) =
£

Part (3). It is enough to verify that gr*(R,) = id: gr{(BC,) © Q — L;. Both
Lie algebras being generated in degree one, it suffices to check this on generators,

i. e., toshow that R,(a;;) =2 1+vy, for all i # j, which is clear from the definition
of R,.
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Part (4). Follows from the residual torsion-free nilpotence of BC,,; see Proposi-
tion 5.3 and the discussion of Torelli groups of free groups. a

Remark 5.5. The upper-triangular McCool groups, BC; C BC,. were examined
in detail in [5]. It follows from [5, Sections 4-5] that BC; is generated by {a;; |
n > 1> j > 1}, with the following sublist of (19) as defining relations:

(I) with 4, j>k: (1I) with ¢>j3>k; (I1I) with i>jk>1.

The proof of Theorem 5.4 applies verbatim to these groups, and gives the fol-
lowing information. The group BC; is 1-formal. The Lie algebra with grading
gri(BC) @ Q is generated by {v;; | n = i > j > 1}, with defining relations as
in Definition 5.1, subject to the restrictions on indices described above. (Note
that the authors of [5] obtain the same presentation for gr{(BC;,). over Z, by us-
ing a different method.) A Malcev completion for BC;, R}, may be obtained by
completing gri-(BC;;) @ Q with respect to the degree filtration, and then defining
R} (ai;) = exp(vy;), for i > j. The representation R, is faithful.

6. NEW UNIVERSAL REPRESENTATIONS AND FINITE TYPE INVARIANTS

We will show that the family of representations, { R, ©id: BP, — O, xQ[%,]}.
constructed in §5.3, shares the essential properties of a Drinfel'd family, {p,: B, —
A, x K[%,]}, listed in §3.2. This leads to a geometric interpretation of the family
{R, @id}, in terms of finite type invariants for welded braids.

6.1. Denote by pl,: B, — O, x Q|%,] the restriction of R, @ id to B,. Recall
from §§5.1-5.2 that one has projections, BP,, — ¥, and exp L,, % I, — ¥,,. One
also has inclusions, BP,,_; — BP,, and exp L, % ¥,_; — expL, % ¥,. So, it
makes sense to speak about properties (), (3) and (S) from §2.3, for {R, © id}
and {p] }.
Theorem 6.1. Both families, { R, @ id} and {p!,}. have the following properties.
(1) They satisfy conditions (E), (X) and (S).
(2) They consist of faithful representations.
(3) They are normalized by: R, @ id(a;;) =2 1 + v, for 1 < i # j < n,
respectively pl.o; = w; @ s;, where u; € expL, and u; =3 1 + v;;41. for
€2 <n:

Proof. Part (1). Property (E) was noticed at the end of §5.3. The other two
conditions are direct consequences of (25). via our discussion of symmetry and
stability morphisms from §§5.1-5.2.

Part (2). Follows from Theorem 5.4(4).

Part (3). Use the definition of R, @ id and p,, together with (21). O

Thus, Theorem 1.2 from the Introduction is established.
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6.2. The finite type invariants for classical braids and links are defined by condi-
tions coming from the (iterated) application of a local move: exchanging negative
and positive crossings, in the associated diagram of a projection.

The groups BP, were given a geometric interpretation in [8]. They may be
identified with welded braid groups, consisting of braids that may also have singular
points (welds), modulo certain allowable moves. The natural local move in this
context is to replace a weld by a positive crossing.

More formally, let J € Q[BP,,] be the two-sided ideal generated by {o;,—s;}1<i<n-
The J-adic filtration {J*};5o will then play the role of the Vassiliev filtration
of classical braids. Let {F.0,}i>0 be the canonical complete filtration of O,.
Define on O, x Q[¥,] the multiplicative filtration Fy := F.0, © Q[¥.,], having
the property that Fy - I} C Fyyy, for all k.l. View R, @ id as an algebra map,
R, @id: Q[BP,| — O, x Q[¥,]. Our next result establishes that R, @ id is a
universal invariant a la Vassiliev, for welded braids.

Theorem 6.2. The algebra map R,, @ id respects the above filtrations and induces
a degree zero multiplicative isomorphism at the associated graded level,

gr' (R, @id): g} (BP,) — O} x Q[%,].

The strategy of proving a similar result for B,,. see [19, Theorem 1.1], may be
adapted to deduce the above theorem (actually, things are here easier than in [19],
since R, ©id is a multiplicative map). The starting point is the following.

Lemma 6.3. Set B = Q[BP,] and let I be the augmentation ideal of BC,,. Then
J¥ = BI*B = BI* = I*B, for all k.

Proof. For the last two equalities, follow the proof of Lemma 2.1 from [19]. It
remains to show that J = BIB. Since plainly BIB is the kernel of the algebra
map Q[BP,] — Q[%,] (see (18)), we infer that J C BIB. To obtain the other
inclusion, it is enough to check that a;; = 1 mod J, for 1 < ¢ # j < n. Since
@;is1 = o387, see (21), we may pick s € ¥, fixing ¢ and sending i + 1 to j, to
deduce from (20) that a;; = s(ois7')s™ =1 mod .J. O

6.3. Proof of Theorem 6.2. Checking that R, @ id(J*) C Fj. for all k, amounts
to verifying that R, ©id(a; — s;) € F,0,, @ Q[%,]. for 1 <i < n. By the definition
of R, and (21), R, @ id(e; — s;) = (exp(vii+1) — 1) @ s;, which proves Theorem
6.2, except for the fact that each map gr*(R, @ id) is a Q-linear isomorphism.

To finish the proof, we introduce an intermediate object, namely the graded
vector space grj(BC,) := @xsol*/I**'. Since R, : BC, — expL, is a Malcev
completion, by Theorem 5.4(3), the general theory from [21] gnarantees the fact
that the induced map, gr*(R,): grjy(BC,) — gri-(UL, = O,) is an isomorphism.
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Hence. we obtain a degree zero isomorphism,

ar (Rn) by ld grl(BCu) Q[L"] - o 2 Q[xn] *

The exact sequence (18) gives rise to a vector space isomorphism, W: Q[BC,] @
Q%] = Q[BP,|, defined by ¥(c @ s) = ¢ s, for ¢ € BC, and s € ¥,. Due
to Lemma 6.3, the argument from [19, §2.2] shows that W identifies the filtrations
{1*®Q|%,]} and {J*}. Consequently. we obtain another degree zero isomorphism,

gr*(¥): grj(BC,) @ Q[X.] — gr}(BP.).

We finish by showing that gr*(R, @ id) o gr*(¥) = gr*(R,) @ id, which follows
at once from the definition of R, © id and W. O
This completes the proof of Theorem 1.3 from the Introduction.

Acknowledgment. We are grateful to Dan Cohen, who directed us to the work
done in [14] and [5], and raised the 1-formality question for (upper-triangular)
MecCool groups.
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