Comparing \$g_0\$ and \$qg_0\$ All with $\left.t=\rho^{6},\right\}=\frac{t-1}{6}$
November 17, $2016 \quad 12,29 \mathrm{PM}$

$$
[u, w]=b
$$

b, c, u, w are primitive

$$
\begin{aligned}
& \Delta_{12}^{\prime} u=t_{2} u_{1}+u_{2} \\
& \Delta_{R}^{\prime} w=t_{2}^{-1} w_{1}+w_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{12}(u)=t_{2} u_{1}+u_{2} \\
& \Delta_{12}(w)=w_{1}+w_{2}
\end{aligned}
$$

In $9 y_{0}: \Delta(t-1)=t_{1} t_{2}-1$
Aside: $(\Delta \otimes 1)(\Delta u)=(\Delta 01)\left(f_{2} u_{1}+u_{2}\right)=t_{3}\left(t_{2} u_{1}+u_{2}\right)+u_{3}$
$\cos A_{n}=\left(\cos _{0}\right)\left(t t_{2} u_{r} u_{2}\right)=t_{2} t_{3} u_{1}+t_{3} u_{2}+u_{3}$

$$
[\Delta u, \Delta w]=\left[t_{2} u_{1}+u_{2}, w_{1}+w_{2}\right]=t_{2}\left(t_{1}-1\right)+t_{2}-1=t_{1} t_{2}-1
$$

The map $\rho: g_{0} \rightarrow+g_{0}$ fixes evarbthing except $\rho(u)=5^{-1} u$:

$$
\begin{aligned}
& \rho[u, w]=b \quad[\rho u, \rho w]=\left[J^{-1} u, w\right]=\left(\frac{t-1}{b}\right)^{-1}(t-1)=b \\
& u / / \rho^{-1} / / \Delta / / \rho \otimes \varphi=\zeta u / / \Delta / / \rho \otimes \rho=\frac{t_{1} t_{2}-1}{b_{1}+b_{2}}\left(u_{1}+u_{2}\right) / / \rho \otimes \rho \\
& =\frac{t_{1} t_{2}-1}{b_{1}+b_{2}}\left(\frac{L_{1}}{t_{1}-1} u_{1}+\frac{b_{2}}{t_{2}-1} u_{2}\right) \\
& u\left\|\rho^{-1}\right\| \Delta^{\prime}\left\|\rho \otimes \rho=\zeta u / / D^{\prime}\right\| \rho \otimes \rho=\frac{-t_{1}-t_{2}-1}{b_{1}+b_{2}}\left(t_{2} u_{1}+u_{2}\right) / / \rho \otimes \rho \\
& =\frac{t_{1} t_{2}-1}{b_{1}+b_{2}}\left(\frac{t_{2} b_{1}}{t_{1}-1} u_{1}+\frac{b_{2}}{t_{2}-1} u_{2}\right) \\
& u / / \rho\|\Delta\| /\left\|\rho^{-1} \otimes \rho^{-1}=\zeta^{-1} u / / \Delta\right\| / \rho^{-1} \sigma \rho^{-1}=\frac{b_{1}+b_{2}}{t_{1} t_{2}-1}\left(t_{2} u_{1}+u_{2}\right) / / \rho \rho^{-\theta} \rho^{-1} \\
& =\frac{b_{1}+b_{2}}{t_{1} t_{2}-1}\left(\frac{t_{2}\left(t_{1}-1\right)}{L_{1}} u_{1}+\frac{t_{2}-1}{b_{2}} u_{2}\right)
\end{aligned}
$$

Q. What wre all the co-associntive coproducts
on $U(b, l)$?

