$\underset{\text { Making P manifestly polynomial }}{\substack{\text { Septer } 29,2016 \\ 12: 34 \mathrm{PM}}}$

$$
\begin{aligned}
& \mathrm{CF}\left[\mathbb{E}\left[\omega, L_{-}, Q_{-}, P_{-}\right]\right]:=\text {Expand /@ Together } / @ \\
& \quad \mathbb{E}\left[\omega / . \mathrm{b}_{L_{-}}: \rightarrow \log \left[\mathrm{t}_{l}\right], L, Q / . \mathrm{b}_{L_{-}}: \rightarrow \log \left[\mathrm{t}_{l}\right],\right. \\
& \\
& \left.\quad P / . \mathrm{b}_{L_{-}}: \log \left[\mathrm{t}_{l}\right]\right] ; \\
& \mathbb{E} /: \mathbb{E}\left[\omega 1_{-}, L 1_{-}, Q 1_{-}, P 1_{-}\right] \mathbb{E}\left[\omega 2_{-}, L 2_{-}, Q 2_{-}, P 2_{-}\right]:= \\
& \\
& \\
& \mathrm{CF} @ \mathbb{E}\left[\omega 1 \omega 2, L 1+L 2, \omega 2 Q 1+\omega 1 Q 2, \omega 2^{4} P 1+\omega 1^{4} P 2\right] ;
\end{aligned}
$$

Utilities

Normal Ordering Operators
$\mathbf{N}_{u_{i_{-}}} c_{j_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\operatorname{With}\left[\left\{q=e^{-\gamma} \beta u_{k}+\gamma c_{k}\right\}, \operatorname{CF}[\right.$
$\mathbb{E}\left[\omega, \gamma c_{k}+\left(L / . c_{j} \rightarrow 0\right)\right.$,) $\operatorname{e~}^{-\gamma} \beta u_{k}+\left(Q / . u_{i} \rightarrow 0\right)$, $\left.\left.\left.e^{-q} D_{c_{j} \rightarrow D_{\gamma}, u_{i} \rightarrow D_{\beta}}[P]\left[e^{q}\right]\right] / .\left\{\gamma \rightarrow \partial_{c_{j}} L, \beta \rightarrow \alpha^{-1} \partial_{u_{i}} Q\right\}\right]\right]$;
$\boldsymbol{N}_{w_{i}} c_{j_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\operatorname{With}\left[\left\{q=e^{\gamma} \alpha w_{k}+\gamma c_{k}\right\}, C F[\right.$
$\mathbb{E}\left[\omega, \gamma c_{k}+\left(L /, c_{j} \rightarrow 0\right), \chi<e^{\gamma} \alpha w_{k}+\left(Q / . w_{i} \rightarrow 0\right)\right.$,
$\left.\left.\left.e^{-q} \mathrm{DP}_{\mathrm{c}_{j} \rightarrow D_{\gamma}, w_{i} \rightarrow D_{\alpha}}[P]\left[e^{q}\right]\right] / . \quad\left\{\gamma \rightarrow \partial_{c_{j}} L, \alpha \rightarrow \omega^{-} \chi^{Z} \partial_{w_{i}} Q\right\}\right]\right] ;$
$N_{w_{i_{-}}} u_{j_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:$
with $\left[\left\{q=\left(1-t_{k}\right) \mu^{-1} \alpha \frac{\beta}{W} \mu^{-1} \beta u_{k}+\mu^{-1} \delta u_{k} w_{k}+\mu^{-1} \alpha w_{k}\right\}\right.$, CF $[$ $\mathbb{E}\left[\mu \nless L, \mu \nless\left(q+\mu\left(Q / . w_{i} \mid u_{j} \rightarrow 0\right) / w\right.\right.$
$\left.W^{-y_{\mu}^{4}} e^{-q} \mathrm{DP}_{\mathrm{w}_{i} \rightarrow D_{\alpha}, u_{j} \rightarrow D_{\beta}}[P]\left[\mathrm{e}^{q}\right]+\omega^{4} \Delta[k]\right] /$.
$\mu \rightarrow(\mathbb{Z})+\left(t_{k}-1\right) \delta /$.
$\left\{\alpha \rightarrow \chi^{-x}\left(\partial_{w_{i}} Q / . u_{j} \rightarrow 0\right), \beta \rightarrow \chi^{z}\left(\partial_{u_{j}} Q / . w_{i} \rightarrow 0\right)\right.$,
$\left.\left.\left.\delta \rightarrow \omega \chi^{z} \partial_{w_{i}, u_{j}} Q\right\}\right]\right]$;
$\Lambda\left[k_{-}\right]:=\left(1-t_{k}\right)\left(\alpha^{2} \beta^{2}+4 \alpha \beta / \delta \mu+2 \delta^{2} \nu / k^{2}\right) / 2+2 \mu^{2}\left(\alpha \beta+\delta^{\delta} \mu\right) c_{k}-$ $\beta(2 \mu-1)(\alpha \beta+2 \delta \mu) u_{k}+2 \beta \delta \mu^{2} c_{k} u_{k}-\beta^{2} \delta(3 \mu-1) u_{k}^{2} / 2+$ $\alpha(\alpha \beta+2 \delta \mu) \boldsymbol{w}_{k}+2 \alpha \delta \mu^{2} c_{k} w_{k}-2\left(t_{k}-1\right) \delta^{2}(\alpha \beta+\delta \mu) u_{k} w_{k}+$ $2 \delta^{2} \mu^{2} c_{k} u_{k} w_{k}-\beta \delta^{2}(2 \mu-1) u_{k}^{2} w_{k}+\alpha^{2} \delta(1+\mu) w_{k}^{2} / 2+$ $\alpha \delta^{2} u_{k} w_{k}^{2}-\left(t_{k}-1\right) \delta^{4} u_{k}^{2} w_{k}^{2} / 2$;

The Λ ó γ os

[^0]\[

$$
\begin{aligned}
& \epsilon /: \epsilon^{n}-/ ; n \geq 1:=0 ; \\
& \Lambda\left[b_{-}, c_{-}, u_{-}, w_{-}, \alpha_{-}, \beta_{-}, \delta_{-}, \nu_{-}\right]:= \\
& \mathbf{2 c w} \alpha \delta v+2 c u \beta \delta v+2 c u w \delta^{2} v+u w^{2} \alpha \delta^{2} v^{3}-\frac{1}{2} b u^{2} w^{2} \delta^{4} v^{3}+\frac{1}{2} w^{2} a^{2} \delta(\mathbf{2}+b \delta) v^{3}- \\
& u^{2} w \beta \delta^{2}(1+2 b \delta) v^{3}-\frac{1}{2} u^{2} \beta^{2} \delta(2+3 b \delta) v^{3}+2 c(\delta+\alpha \beta v)-2 b u w \delta^{2} v^{2}(\delta+\alpha \beta v)+ \\
& w \alpha \gamma^{2}(\mathbf{2} \delta+\alpha \beta \gamma)-u \beta(\mathbf{1}+\mathbf{2} b \delta) \gamma^{2}(\mathbf{2} \delta+\alpha \beta \gamma)-\frac{\mathbf{1}}{\mathbf{2}} b v\left(\mathbf{2} \delta^{2}+\mathbf{4} \alpha \beta \delta v+\alpha^{2} \beta^{2} \gamma^{2}\right) \text {; }
\end{aligned}
$$
\]

```
NO \(\left[u_{i_{-}}, \mathbf{c}_{j_{-}}, k_{-}\right]\left[P_{-} . \mathbb{E}\left[Q_{-}\right]\right]:=\)Simp@Module \([\{q(*, \alpha, \beta, \theta *)\}\),
    \(q=e^{-\alpha} \beta \mathbf{u}_{k}+\alpha \mathbf{c}_{k}+\theta ;\)
    \(\mathbb{e}^{-q} \mathbf{D P}\left[P, \mathbf{c}_{j} \rightarrow \mathbf{D}_{\alpha}, \mathbf{u}_{i} \rightarrow \mathrm{D}_{\beta}\right]\left[\mathbf{e}^{q}\right] \mathbb{E}[q] / .\left\{\alpha \rightarrow \operatorname{Together}\left[\partial_{\mathbf{c}_{j}} Q\right], \beta \rightarrow \partial_{\mathbf{u}_{i}} Q, \theta \rightarrow\left(Q / \cdot \mathbf{c}_{j} \mid \mathbf{u}_{i} \rightarrow \theta\right)\right\}\)
    ];
```

```
\(\mathrm{NO}\left[\mathbf{w}_{i_{-}}, \mathbf{c}_{j_{-}}, k_{-}\right]\left[P_{-} . \mathbb{E}\left[Q_{-}\right]\right]:=\operatorname{Simp} @ \operatorname{Module}\left[\left\{q\left(*, \alpha, \beta, \theta_{*}\right)\right\}\right.\),
    \(q=e^{\alpha} \beta w_{k}+\alpha c_{k}+\theta ;\)
    \(\mathbf{e}^{-q} \mathbf{D P}\left[P, \mathbf{c}_{j} \rightarrow \mathbf{D}_{\alpha}, \mathbf{w}_{i} \rightarrow \mathrm{D}_{\beta}\right]\left[\mathrm{e}^{q}\right] \mathbb{E}[q] / .\left\{\alpha \rightarrow \operatorname{Together}\left[\partial_{\mathbf{c}_{j}} Q\right], \beta \rightarrow \partial_{\mathbf{w}_{i}} Q, \Theta \rightarrow\left(Q / \cdot \mathbf{c}_{j} \mid \mathbf{w}_{i} \rightarrow \theta\right)\right\}\)
    ];
```

$\mathrm{NO}\left[\mathbf{w}_{i_{-}}, \mathbf{u}_{j_{-}}, k_{-}\right]\left[P_{-}, \mathbb{E}\left[Q_{-}\right]\right]:=$Simp@Module $[$
$\left\{\alpha \theta=\partial_{\mathbf{w}_{i}} Q / \cdot \mathbf{u}_{j} \rightarrow \theta, \beta \theta=\partial_{\mathbf{u}_{j}} Q / \cdot \mathbf{w}_{i} \rightarrow \theta, \delta \theta=\partial_{\mathbf{w}_{i}, u_{j}} Q, \theta \theta=Q / \cdot \mathbf{w}_{i} \mid \mathbf{u}_{j} \rightarrow \theta, \mathrm{q}(*, \alpha, \beta, \delta, \theta, \quad v *)\right\}$,
$q=-\mathbf{b}_{k} v \alpha \beta+v \beta u_{k}+\nu \delta u_{k} w_{k}+\nu \alpha w_{k}+\Theta ;$
$e^{-q} \mathrm{DP}\left[P, w_{i} \rightarrow \mathrm{D}_{\alpha}, u_{j} \rightarrow \mathrm{D}_{\beta}\right]\left[v\left(1+\epsilon v \Lambda\left[b_{k}, c_{k}, u_{k}, w_{k}, \alpha, \beta, \delta, v\right]\right) e^{q}\right] \mathbb{E}[q] /$.
$\left\{\alpha \rightarrow \alpha \theta, \beta \rightarrow \beta \theta, \delta \rightarrow \delta \theta, \theta \rightarrow \theta \theta, \nu \rightarrow\left(1+b_{k} \delta \theta\right)^{-1}\right\}$
];

[^0]: From Projects/OneCo-1606/NOE-1.nb:

