Rescaling u for health and beauty

August 11, 2016 6:10 PM

 $u = \frac{b\pi}{e^{2}-1} = 5\pi \frac{5}{2} = \frac{e^{2}-1}{1}$ g_0 bi-local exponentiation relations. In $g_0 = \mathcal{D}II = \mathcal{D}II =$ $\mathcal{D}\Pi = \mathcal{D}\Pi := \langle b, c, u, w \rangle / ([b, \cdot] = 0, [c, u] = u, [c, w] =$ -w, [u, w] = b with deg(b, c, u, w) = (1, 0, 1, 0) and $a_{12} =$ Lu, v1 = (6 - 1)(verifications in G0.nb) $b_1c_2 + u_1w_2$: 1. The Yang-Baxter element, $\exp_{\mathcal{U}}(a_{12}) = \exp\left(b_1c_2 + \frac{e^{b_1-1}}{b_1}u_1w_2\right) /\!/ m_1^{u_1} /\!/ m_2^{c_2w_2} \longrightarrow L_1C_2 + \overline{C_1} / C_2$ $\begin{bmatrix} c, uw \end{bmatrix} = 0 \checkmark \\ e^{\beta u} e^{\alpha c} = e^{\alpha c} e^{e^{-\alpha} \beta u} \text{ and } e^{\beta w} e^{\alpha c} = e^{\alpha c} e^{e^{\alpha} \beta w} \checkmark$ 2. 🗸 3. 🗸 $[w, e^{\gamma u}] = -b\gamma e^{\gamma u}$ and $[u, e^{\gamma w}] = b\gamma e^{\gamma w}$ 4. With $M_{uw} = M_{uw}(\gamma) \coloneqq e^{\gamma uw} / m^{uw} = \sum_{k \ge 0} \frac{\gamma^k}{k!} u^k w^k$, $\checkmark \qquad [u, M_{uw}] = b\gamma u M_{uw} \quad \text{and} \quad [w, M_{uw}] = -b\gamma M_{uw} w$ $\checkmark \qquad \qquad M_{uw}^{-1}(\gamma(\alpha)) \partial_\alpha M_{uw}(\gamma(\alpha)) = \frac{\partial_\alpha \gamma(\alpha)}{1 - b\gamma(\alpha)} uw$ LVB= 5. With $M_{wu} = M_{wu}(\delta) := e^{\delta uw} / m^{wu} = \sum_{k \ge 0} \frac{\delta^k}{k!} w^k u^k$, $\checkmark \qquad [u, M_{wu}] = b \delta M_{wu} u$ and $[w, M_{wu}] = -b \delta w M_{wu}$ $\checkmark \qquad M^{-1}_{wu}(\alpha \delta) \partial_\alpha M_{wu}(\alpha \delta) = \frac{\delta}{1+b\alpha \delta} w u = \frac{\delta}{1+b\alpha \delta} (uw - b)$ 1+L)-1F - 1+65_11F - --- $M_{wu}(\delta) = \frac{1}{1+b\delta} M_{uw}\left(\frac{\delta}{1+b\delta}\right) M_{wu}\left(\frac{\delta}{1+b\delta}\right) = M_{wu}\left(\frac{\delta}{1+b\delta}\right) = M_{wu}\left(\frac{\delta}{1+b\delta}\right) = M_{uw}\left(\frac{\delta}{1+b\delta}\right) =$ 6. 🗸 $e^{\alpha w}e^{\beta u} = e^{-b\alpha\beta}e^{\beta u}e^{\alpha w}$ 7. \checkmark The hard core *uw* relation. $=\frac{1}{1+(e^{2}-1)\Gamma}M_{HW}\left(\frac{1}{1+(e^{2}-1)J}\right)$ $\sum = (1+(e^{2}-1)\Gamma)^{-1}F = \langle F = \frac{b}{1-F}F$ with $v = (1 + b\delta)^{-1}$, $e^{\alpha w} M_{wu}(\delta) e^{\beta u} = v e^{-bv\alpha\beta} e^{v\beta u} M_{uw}(v\delta) e^{v\alpha w}$ \checkmark 1-Smidgen sl_2 / g_1 bi-local exponentiation relations. With $\epsilon^2 = 0$, in $\mathfrak{g}_1 := \mathbb{Q}[\epsilon]\langle b, c, u, w \rangle / ([b, \cdot] = 0, [c, u] = u, [c, w] =$ -w, $[u, w] = b - 2\epsilon c$ with deg $(b, c, u, w, \epsilon) = (1, 0, 1, 0, 1)$ and 1 Mn * (1) e B = J e (1- c2) $a_{12} = (b_1 - \epsilon c_1)c_2 + u_1w_2$: (verifications in G1.nb) $e^{\beta u}e^{\alpha c} = e^{\alpha c}e^{e^{-\alpha}\beta u}$ and $e^{\beta w}e^{\alpha c} = e^{\alpha c}e^{e^{\alpha}\beta w}$ 1. c relations: 2. With $v = (1 + b\delta)^{-1}$ and Λ as below, $\mathbb{O}\left(e^{\alpha w+\beta u+\delta uw}\mid wu\right) = \mathbb{O}\left(\nu(1+\epsilon\nu\Lambda)e^{\nu(-b\alpha\beta+\alpha w+\beta u+\delta uw)}\mid cuw\right)$ (160805) Λ for $\Lambda \dot{0}\gamma 0\zeta$, "a principle of order and knowledge": $\Lambda =$ $-\frac{1}{2}bv\left(\alpha^{2}\beta^{2}v^{2}+4\alpha\beta\delta v+2\delta^{2}\right)-\frac{1}{2}\beta^{2}\delta v^{3}u^{2}(3b\delta+2)-\frac{1}{2}b\delta^{4}v^{3}u^{2}w^{2} \beta \delta^2 v^3 u^2 w (2b\delta + 1) - \beta v^2 u (2b\delta + 1) (\alpha \beta v + 2\delta) - 2b\delta^2 v^2 u w (\alpha \beta v + 2\delta)$ $\delta) + \frac{1}{2}\alpha^2 \delta v^3 w^2 (b\delta + 2) + 2c(\alpha\beta\nu + \delta) + 2\beta c\delta\nu u + 2c\delta^2\nu u w + 2\alpha c\delta\nu w +$ $\alpha \delta^2 v^3 u w^2 + \alpha v^2 w (\alpha \beta v + 2\delta).$ (160801a) Roland's $sm_a sl(2)$ formulas, BBS:VanDerVeen-160731, with $q = e^{\epsilon}$, $t = e^{b}$: b central, [w, c] = w, [c, u] = u, $\begin{aligned} wu - quw &= 1 - te^{2\epsilon c} \text{ (at } \epsilon^2 = 0: [w, u] = \epsilon uw + 1 - t - 2\epsilon tc), \\ R &= \sum_{m,n} \frac{u^n (b + \epsilon c)^m \otimes \epsilon^m w^n}{m! [n]_q!} \rightarrow \sum_{m,n} \frac{u^n (b + \epsilon c)^m \otimes \epsilon^m w^n}{m! n!} \left(1 - \frac{\epsilon}{2} \binom{n}{2}\right). \end{aligned}$ Also, $\Delta(b, c, u, w) = (b_1 + b_2, c_1 + c_2, t_2 e^{\epsilon c_2} u_1 + u_2, e^{\epsilon c_2} w_1 + u_2)$ w_2) and $S(b, c, u, w) = (-b, -c, -t^{-1}ue^{-\epsilon c}, -we^{-\epsilon c})$. Verified VdVAlgebraAt1-Testing.nb.