Extensions of representations

$$
\begin{gathered}
O \longrightarrow A \rightarrow B \xrightarrow[\beta]{c} c \longrightarrow 0 \\
B \cong\{(a, c)\} \quad \varphi: G \times c \rightarrow A \\
g(a, c)=\left(g a+\varphi_{g} c, g c\right) \quad \varphi_{g} c \in A \\
g=g_{1} g_{2}: \quad \varphi_{g_{1},}(c)=g_{1} \varphi_{g_{2}}(c)+\varphi_{g}\left(g_{2} c\right)
\end{gathered}
$$

$$
\Phi_{\delta}: B \rightarrow B \text { by }(a, c) \mapsto(a+\delta c, C)
$$

$$
\text { inverse: }(a, c) \mapsto(a-\delta c, c)
$$

$$
\begin{aligned}
& g \Delta_{r}(a, c):=\Phi_{r}^{-1}\left(g \Delta\left(\Phi_{r}(a, c)\right)\right) \quad \delta: c \rightarrow \\
&=\Phi_{r}^{-1}(g \Delta(a+\delta c, c))= \\
&=\Phi_{r}^{-1}\left(g a+g f\left(+\varphi_{g}(c), g c\right)\right. \\
&=\left(g a+g^{f} c+\varphi_{g}(c)-\delta g c, g c\right) \\
& \varphi_{g}^{\delta}(c)
\end{aligned}
$$

In the cum case:

$$
\begin{aligned}
& 0 \rightarrow\{u w\} \rightarrow\{c, u w\} \rightarrow 0 \\
& G \otimes G^{*}\{c\} \rightarrow 0 \\
& \mathbb{R}^{n}
\end{aligned}
$$

So $\varphi_{g}(c)$ is $\varphi: P_{w} \sigma_{n} \times n \longrightarrow G \otimes G^{*}$

