From Cheatshcet Free Lie:

$$
\begin{aligned}
& \text { 5. } \checkmark \Gamma \text { With } \Gamma(t) \in F L(T)^{T} \text { solving } \Gamma(0)=0, \Gamma^{\prime}(s)= \\
& \lambda / / e^{-\partial_{s \lambda} / / / \frac{\text { ad } \Gamma(s)}{e^{d(T(s)}}-1}, \\
& e^{-\partial_{\lambda}}=C^{\Gamma(1)}
\end{aligned}
$$

6. $\checkmark \Lambda$: With $\Lambda(t) \in F L(T)^{T}$ solving $\Lambda(0)=0, \Lambda^{\prime}(s)=$

$$
\lambda / / e^{\partial \Lambda(s)} / / \frac{\mathrm{ad}_{t b} \Lambda(s)}{e^{\mathrm{a}_{t b} \Lambda(s)}-1},
$$

$$
e^{-\partial_{\Lambda(1)}}=C^{\lambda}
$$

$$
\text { RHS at } \Lambda\left(\lambda_{2}\right) \rightarrow \lambda_{2}, \text { meaning }
$$

$$
\text { is } Z^{-1} E z \text { (up to signs etc.) }
$$

$$
\begin{aligned}
& \text { Fran w KOM.nb (but wit move): } \\
& \lambda 2=\langle 1 \rightarrow \text { RandomLieSeries }[\{1,2\}], 2 \rightarrow \operatorname{RandomLieSeries}[\{1,2\}]\rangle \\
& \left\{1 \rightarrow \operatorname{LS}\left[\overline{2}, 0,-\frac{1}{3} \overline{1 \overline{12}}-\overline{\overline{122}}, \frac{41}{24} \overline{1 \overline{1 / 2}}+\frac{19}{12} \overline{\overline{1 / 22}}+\frac{7}{12} \overline{\overline{12} 2} 2, \ldots\right], 2 \rightarrow\right. \\
& \left.\mathrm{LS}\left[2 \overline{1}+2 \overline{2},-2 \overline{12},-\frac{1}{3} \overline{1 \overline{12}}+\frac{5}{6} \overline{\overline{12} 2}, \frac{29}{24} \overline{1 \overline{1 \overline{12}}}-\frac{11}{8} \overline{\overline{1 / 22}}-\frac{17}{\overline{12}} \overline{\overline{12} 2} 2, \ldots\right]\right\} \\
& \left\{1 \mathrm{hs}=\lambda 2 / / \operatorname{EulerE} / / \operatorname{adSeries}\left[\frac{\mathrm{a}^{\mathrm{ad}}-1}{\mathrm{ad}}, \lambda 2\right] / / \mathrm{RC}[-\lambda 2]\right. \text {, } \\
& \left.\mathrm{rhs}=\Lambda[\lambda 2] / / \operatorname{EulerE} / / \operatorname{adSeries}\left[\frac{e^{\mathrm{ad}}-1}{\mathrm{ad}}, \Lambda[\lambda 2], \mathrm{tb}\right] ;(\mathrm{lhs} \equiv \mathrm{rhs}) \oplus\{8\}\right\} \\
& \left\{\left\{1 \rightarrow \operatorname{LS}\left[\overline{2},-2 \overline{12}, \overline{1 \overline{12}}-\overline{\overline{122}}, \frac{15}{2} \overline{1 \overline{1 \overline{12}}}+\frac{20}{3} \overline{\overline{1 / 22}}-\frac{5}{6} \overline{\overline{122} 2}, \ldots\right],\right.\right. \\
& 2 \rightarrow \operatorname{LS}\left[2 \overline{1}+2 \overline{2},-6 \overline{12}, 5 \overline{1 \overline{12}}+\frac{11}{2} \overline{\overline{122}},\right. \\
& \left.\left.\left.\frac{3}{2} \overline{1 \overline{1 \overline{12}}}-\frac{45}{2} \overline{1 \overline{\overline{122}}}-\frac{49}{6} \overline{\overline{122} 2}, \ldots\right]\right\}, B S[9 \text { True, } . . .]\right\}
\end{aligned}
$$

