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The Kashiwara-Vergne Problem and Topology Video, handout, links at /(e M

Abstract. I will describe a general machine, a close cousin
of Taylor’s theorem, whose inputs are topics in topology and
whose outputs are problems in algebra. There are many in-
puts the machine can take, and many outputs it produces,
but I will concentrate on just one input/output pair. When
fed with a certain class of knotted 2-dimensional objects in
4-dimensional space, it outputs the Kashiwara-Vergne Prob-
lem (1978 w/KV, solved Alekseev-Meinrenken 2006 w/AM,
elucidated Alekseev-Torossian 2008-2012 w/AT), a problem
about convolutions on Lie groups and Lie algebras.
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In the finitely presented case, finding Z amounts to solving a
system of equations in a graded space.

Theorem (with Zsuzsanna Dancso, w/WKO).
There is a bijection between the set of homomor-
phic expansions for wK and the set of solutions
of the Kashiwara-Vergne problem. This is the tip |
of a major iceberg. Dancso, w/ZD

The unary
W—operations

The Machine generalizes to arbitrary
algebraic structures!

w/mac

, ~ “God created the knots, all else in
_ topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org Tl"’ch'héL) ola.
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Some very good formulas for the Alexander polynomia

1

scalar)valued extension of the Alexander polynnomial to tanglesn
say that everything extends to virtual tangles, then rougilsimply
knotted balloons and hoops in 4D, then the target spaceaxte(free

Abstract. | will describe some very good formulas for(matrix plus
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In Addition e The matrix partis just a stitchi
formula for BurayGassnerl[D, KLW, CT].
e L — w is Alexander, mod units.

MVA, mod units.

e The “fastest” Alexander algorithm. e
e There are also formulas for strand deletion,
reversal, and doubling.

e Every step along the computation is the invariant of someil
e Extends to and more naturally defined gwitangles.

e Fits in one column, including propaganda & implementation
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Proposition. If T is a u-tangle ang3(6T) = (w,A), then
¥(T) = (w,0 — A), whereo = diag@a)acs. Under this,mg® «
thad®/tmg®/nng®.
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Issues.e Signs don't quite work out, and BF seems to reproduct
only “half” of the wheels invariant.
e There are many more configuration space integrals than E
Eeynman diagrams and than just trees and wheels.

sbdon’t know how to define “finite type” for arbitrary 2-knots
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Meta—Groups, Meta—Bicrossed—-Products,
Dror Bar—Natan in Montreal, June 2013.

and the Alexander Polynomial, 1

http://www.math.toronto.edu/~drorbn/Talks/Montreal-1306/

IAbstract. I will define “meta-groups” and explain how one specifig
meta-group, which in itself is a “meta-bicrossed-product”, gives rise
to an “ultimate Alexander invariant” of tangles, that contains the
IAlexander polynomial (multivariable, if you wish), has extremely]

Alexander Issues.
e Quick to compute, but computation departs from topology
e Extends to tangles, but at an exponential cost.

leood composition properties, is evaluated in a topologically mean-
ingful way, and is least-wasteful in a computational sense. If you
believe in categorification, that’s a wonderful playground.

This work is closely related to work by Le Dimet (Com-
ment. Math. Helv. 67 (1992) 306-315), Kirk, Livingston
and Wang (arXiv:math/9806035) and Cimasoni and Turaev

(arXiv:math.GT/0406269).
See also Dror Bar-Natan and Sam Selmani, Meta-Monoids,

Meta-Bicrossed Products, and the Alexander Polynomial, @
larXiv:1302.5689.

Sam Selmani

Idea. Given a group G and two “YB”
pairs R = (¢F,¢F) € G?, map them 4
to xings and “multiply along”, so that

@“ )

This Fails! R2 1mphes that gF¢gF = e = gF gl and then R3
implies that g and g commute, so the result is a simplg
counting invariant.
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A Standard Alexander Formula. Label the arcs | through|
(n+ 1) = 1, make an n X n matrix as below, delete one row
and one column, and compute the determinant:

A Group Computer. Given G, can store group elements and|
perform operations on them:

m

.so that mg¥ //
muz—myz//m

(or m,

T g

u: g2

Vg3
Y94

G{m,u,v,y}

z 1
o m,

my=, in old-

My, O
speak).
|Also has S, for inversion, e, for unit insertion, d, for register dele
tion, A7 for element cloning, pj for renamings, and (D1, D2) i
D1 U Dy for merging, and many obvious composition axioms relat
ing those. P={z:91,y:92} = P={d,P} U{d, P}
A Meta-Group. Is a similar “computer”, only its internall
structure is unknown to us. Namely it is a collection of set
{G,} indexed by all finite sets v, and a collection of opera-
tions m2?, S, s, dy, A%, (sometimes), py, and U, satisfying
the exact same [inear properties.

[xample 0. The non-meta example, G := G".
Example 1. Gy := Myx,(Z), with simultaneous row and
column operations, and “block diagonal” merges. Here if

P = <z a Z) then dyP = (z : a) and d,P = (y : d) s9
T a 0
{dyP}U{de} = <y 0 d

Claim. From a meta-group G and YB elements Rt € Gy we
can construct a knot/tangle invariant.

> # P. So this G is truly meta,

Bicrossed Products. If G = HT is a group presented as a

X\ a b . product of two of its subgroups, with H NT" = {e}, then also
N 1 -1 1-x x GG = TH and G is determined by H, T, and the “swap” map|
w : (t,h) — (B',t') defined by th = A't’. The map su
N 7. a b c satisfies (1) and (2) below; conversely, if sw : T'x H — H x T
o o]l -X o X-1 1 satisfies (1) and (2) (4 lesser conditions), then (3) defines a
P e group structure on H x T', the “bicrossed product”.
-+ x 0 0 0 0 1-X 0 4ty hath ty ke . T 1 1 202
0 -1 X 0 1-Xx 0 0 0 : : :
-1 0 - o 0o 0o o 1 1 1
xo 1-% ox -11 x o o o |[[Fi77,1777]1// Deg : (1) f (2) f
0o 0o o o0 -Xx 1 0 x-1 : = : = (3)
0 0 1-x 0 0 -1 X 0 : : : 3 J3
0 0 0 x-1 0 0 X ! T Vtm12//sw14—sw24//sw14//t7.ﬁ ........ :.....éﬁé...:.oiulg//tmlz//hmm
-1 +4X-8xX2+11x3-8x*+4x°-X° Chitihotls .;.hl(h/ t/ )t2 = (hlh/ )(tqtz) = hats
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- B ) < ~al iy t=p /.t =15
A Meta-Bicrossed-Product is a collection of sets 5(n, 7) and! mean business! e (5 2 PCoLIeCE(s /. ]
. imp = Factor; SetAttributes[fCollect, Listable]; ey oz [Blo, 411 := Module[
operations tm%, hm%? and sw'". (and lesser ones), such 10 0t e (2= DL, hi1, B=DLA, B, v=d /. By 2 0,
. . - = o ! . B[z, (a+ (1+{a))B)h.+y] // BCollect];
tm and hm are “associative” and (1) and (2) hold (+ lesser| cotrect[s n. °°1le°t[’[*r t_, psimp] 6] owun [Blu, A 1] 1= Module[{a, £, v, 6, e},
L. . |BForm[B[w , 4 ]] := Module[{ts, hs, M}, a = Coefficient[4, hytu]; B = D[4, t.] /. he » 0;
conditions). A meta-bicrossed-product defines a meta-group| s - vaion[cases[sts, 41, &, = o, ninity]]; YDl bl /ot 0 S a ) bl o0
. . hs = Union[Cases[B[w, 4], h, = x, Infinity]]; cE i
Wlth G = 6(7 'Y) and gm as 1 (3) X O Bluse, a(L+(¥)/€) hoty + B (L+(¥)/€) to
~ 5 M = Outer([BSimp[Coefficient[4, hs t.,]] &, hs, ts]; vy/eh, b 6-y#Ble
E 1 T k IB( ) _ M (Z) th t f PrependTo[M, t. & /@ ts]; 17/ ﬂciil:;t]; orven
Xamp €. ake 777 T) = TXnN w1 row Opera’ 0ns 107 M = Prepend[Transpose[M], Prepend[h, & /@ hs, w]]; am,, .. [A] t= £ // Sway // Mapee // tmapc;
the tails, column operations for the heads, and a trivial swap.| Mat=ixrompal: m P R ) Bl e
’ ? BForm[else ] := else /. 4 B » BForm[4]; Bon i= 5{1' Ex b ; bs] ']
[Format[4 B, StandardForm] := BForm[/]; Rmgp i= B[1, (x7-1) tahs];
3 Calculus. Let B(n,7) be B
N )
wlh hy - |phien t;er andw and {B=Blw, Sum[asos.; ts hy, {i, {1, 2, 3}}, {3, {4, 5}}11,
1o a2 - |the a;; are rational func- (B// tmiz,1 // swig) = (B // sWay // swiga // tmiz,1)}

ta | @21 Q22 - |tions in a variable X with (’ w h; hs
. . . |w(l) =1 and Oél'j(l) =0 t1 014 s T Some
{ tz Otz4 azs |’ rue testing
S o U 34 O3
7 | |
t )

{Rms; Rmgy Rp3y // gmyy,y // gMys,, // gmye,s,
’ \1/1/ Rpg; Rmpg Rmzs // gmy,,; // gmys,, // gmge,3}

hy hy 1 h  h
-0 t, -2 0 }
| X r X
4 ﬁ; A PSS IS’ QS IS ¢
‘ X 3 X X
... divide and conquer!
w | hy - we | hy . B = Rm12,1 Rmy7 Rmg3 Rmy, 11 RP16, 5 RP6, 13 RP14,9 RP10,15 817

S’LUZ}?C by | @ B — tu a(l + '7>/6) /8(1 + <7>/6) , 1 h; h3 hs hy hg hiq hi3 his

: t, 0 0 0o -=LX 0 0 0
) v/€ 0 —~B/e X

tgy 0 0 0 0 0o -=% 0 0
where € := 1+« and (c) := ), ¢;, and let e 0 0 0 0 0 0 1.x 0
1 | ha hb 1 | ha hb tg 0 —’1X*X 0 0 0 0 0 0

R = ta 0 X —1 77}):: ta 0 X_l—l ) tio 0 0 0 0 0 0 0 -1+X
ab t | 0 0 “ ty | 0 0 ty; -LX 0 0 0 0 0 0 0
tiy 0 0 0 0 -1+ 0 0 0
Theorem. ZP is a tangle invariant (and more). Restricted tol\ tis 0 0 -1+X 0 0 0 0 0

knots, the w part is the Alexander polynomial. On braids, itP°[® = # // e, {k, 2, 10317 B 817, cont.

is equivalent to the Burau representation. A variant for links L h, hy; his hys

contains the multivariable Alexander polynomial. £y -0 (1hx) (1-X+XP) (-14X) (1-X+X%) -1+X
'Why Happy? e Applications to w-knots. b - 0 0 0
e Everything that I know about the Alexander polynomial|t,, -1+x L’”Zxﬁﬂl f%ﬂ 0
can be expressed cleanly in this language (even if without| , . (-1+%)2 _L1ew)® 0

proof), except HF, but including genus, ribbonness, cabling,- -~ -~ -=-------------------—“---—--——~—-—~- - -
v-knots, knotted graphs, etc., and there’s potential for vast Do[B = B // gmy,,, {k, 11, 16}]; B

. James

generalizations. 2 \Waddell < _1-4x+8x2-11x3+8x4-4x5+x )
o The least wasteful “Alexander for tangles” Alexander x3

['m aware of. s @\ Partial To Do List. 1. Where does it more

e Every step along the computation is the i simply come from?

variant of something. b - E2. Remove all the denominators.

e F'its on one sheet, including implementation®
& propaganda.

3. How do determinants arise in this context?

M _ 4 Understand links (“meta-conjugacy classes”). ~
Further meta-monoids. II (and variants), A (and quotients),5. Find the “reality condition”. (\
wl’, ... 6. Do some “Algebraic Knot Theory”. :

Further meta-bicrossed-products. IT (and variants), j (and7. Categorify.
uotients), Mg, M, K, K00 . 8. Do the same in other natural quotients of the

Meta-Lie-algebras. A (and quotients), S, ... v/ W-StOTy - (M/
Meta-Lie-bialgebras. A (and quotients), | #1 "God created the knots, all else in N
[ don’t understand the relationship between gr and H, as itfix < topology is the wo_rk of mortals.” \

appears, fOI‘ examp167 in braid theory. Leopold Kronecker (modified) www.katlas.org ]/ et o example




Videos of all talks are available at their respective web pages

Trees and Wheels and Balloons and Hoops kv, gy, 15 Minutes on Topology

Dror Bar-Natan, Zurich, September 2013 101 [ balloons / tails
Ee “Ribbon- | - ﬂ a
%= knotted \

weB:=http://www.math.toronto.edu/~drorbn/Talks/Zurich-130919
balloons ~ -

15 Minutes on Algebra i
Let 7 be a finite set of “tail labels” and H a finite sot of and hoops” 00 %RZ’:
“head labels”. Set crbedaines

TOC
“H-labeled lists of elements of the degree-completed free Lie hoops / heads

algebra generated by T7.

“the generators”

Examples. | A
1 1 : . | &
FL(T) = { 2ty — —[t1, [t1,ta]] + . .. /(antl symnqetry) €t I p | N N
2 Jacobi ) t) | ;
... with the obvious bracket| " O ! !
v |
U Y v u N v 4 _ | Shin Satoh
Ml/?(uav;xay):g)‘:Gj_}Yay—)‘_%?/ ) puwbx Puz* o :
@ y e :lr)"l
|

Operations My o — M /5. :
Tail Multiply tm“’ is A — X J (u,v — w), satisfies “meta-VIore on \/ L %;S/\( >< L %;9 =
associativity”, tmiY J tmi = tmPY ) tmkv. 0 N\ XN o %Q\
Head Multiply hmz? is A = (A\{z,y}) U (z = bch(\g, \y)), satisfies R123, VR123, D, and ¥
no! ——
1

where A\ £ j
. <\< yet not
bch(a,ﬂ)::log(eo‘eﬁ):a—kﬂ-k[0‘_;3}4_w+.”OC'ReyaS >> = uc: A

satisfies beh(beh(a, ), ) = log(e®ee?) = beh(a, beh(5,7))® § injects u-knots into K" (likely u-tangles too).
and hence meta-associativity, hmi? /) hm®* = hm’* || hmi.[® § maps v-tangles to K?"; the kernel contains the above and

o .onjecturally h), that’s all.
Tail by Head Action tha® is A v X J RC)r, wherd prciirly (Satoh), thavs all ©
C.,": FL. — FL is the substitution u — e Yue?, or mord &b ! -

uoo- ) ot Q T
precisely, Operations ' Connected * e e
1 Punctures & Cuts | Sums. ) — OO

Cu ’y: u—e ad'y(u) =u-— [7a u] + 5[’}/’ [7a UH RARE! if_X_iS_a_S_pglC_e_, ;Tl_(}(_)l

and RCY = (C")~'. Then Cbch(a B) _ Cgc//RC;ﬂ //Cﬁ hence%s a group, mo(X)
RCPM@H) _ poe / RCﬁ//ROu hence “meta u®¥ — (u)¥” is an Abelian group,
v u v ' land 7 acts on .

hm%Y | tha"® = tha"™ ) tha"™ [ hmZY, | .

v RO B Riddle. People often:
and tm%”//Cﬂ// my = o/ RC J CJ ) tm“’ and hence metag dy (X) = [$%, X]

(uv)® = u®v®”, tm™ [ tha™® = tha"® || tha'® || tmU. and m(X) = 52, X]..
(Wheels.  Let M(T;H) = M;(T;H) x CW(T), wherd Wby not 77 (X) =
CW(T) is the (completed graded) vector space of cyclic words

on T', or equaly well, on FL( O/ b @b z
7 st % T
C:J Q ‘&} % é “Meta-Group-Action” " e e
©eB/antig-ave Properties.
Operations. On M(T; H), define tm"“’ and hm:’ as before/® Associativities: mg? | mge = mp® [ mgl, for m = tm, hm.

and tha"* by adding some .J-spice: o “(uv)® = utv™: tmi” J tha® = tha* // tha®® [ tmy?
(\; w) A\ w + Ju(As)) /) RO o “u™V) = (u*)¥: hmZY )| tha'* = tha"® || tha™V //hm

)

Tangle concatenations — 71 X mo. With dmgb = tha //
me® [ hmg?

Alekseev a
5 v C i
IVu Qa dmgb C
a C
Torosslan . . .

[inite type invariants make >/ _>/ >>/ _>>/
XK RK

Theorem Blue. All blue identities still hold. sense in the usual way, and
Merge Operation. (A;wi)*(Aa;wo) := (A1 U \p;wy +wo).  |“algebra” is (the primitive part of) “gr” of “topology”.

where J,, ( ds div,, (y // RC) ) / C, %7, and

o
3@
e}



http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/antiq-ave
http://www.math.toronto.edu/~drorbn/Talks/Zurich-130919

Videos of all talks are available at their respective web pages

Trees and Wheels and Balloons and Hoops: Why I Care

Moral. To construct an M-valued invariant ¢ of (v-)tangles,
and nearly an invariant on K, it is enough to declare ¢ on|
the generators, and verify the relations that ¢ satisfies.

The [ quotient is M divi- |
ded by all relations that uni-
versally hold when when g is |

[The Invariant (. Set ((e;) = (x — 0;0), {(ey,) = (();0), and

¢ L (f 10) ‘?WW )

(Theorem. ( is (log of ) the unique homomor-
phic universal finite type invariant on %"
(... and is the tip of an iceberg) |

Paper in progress with Dancso, ©ef3/wko B

L := R®T with central R and Wlth [u,v] = cyv — cyu for
U, v €T. Then FL — Lg and CW — R. Under this,
' p— (Ae)iw) with Ap = > Ayguar, Aug,w € R,

the 2D non-Abelian Lie alge- |
bra. Let R = Q[{cy}uer] and'

ueT

Cu + Cy e —1 e, € —1
beh(u,v) — pe—] < o u+e o v,
fy=> 9 then with ¢, := Z’yvcv,
e — 1 ey 1]

// RCVY = <1 + Yy

. e
eU — ¢y E YU

|

C
Y Y v#u

B g

«div, v = cyyu, and Jyu(vy) = log (1—1—

e’y —

Cu’)/u)y S0 C i3

ormula-computable to all orders! Can we sunphfy’?

Repackaging.  Given ((z — Ayz);
replace Az — Qug = Cyduz ot and w — e¥

w), set ¢z == Y. Cylua,

e

See also ms@/tenn weP/bonn, wefB/swiss, ms@/portfoho

, use ty, =

x
and write oy, as a matrix. Get “3 calculus”.

( is computable! ¢ of the Borromean tangle, to degree 5:

cyclic colou

\ + by
B . <permutations,>

for trees

I have a nice free-Lie
calculator!
+2

w

3 Calculus. Let 5(T; H) be

[Tensorial Interpretation. Let g be a finite dimensional Lie
algebra (any!). Then there’s 7 : FL(T) — Fun(®rg — g)
and 7 : CW(T) — Fun(®rg). Together, 7 : M(T;H) —
Fun(@®7rg — ®xg), and hence

e M(T; H) — Fun(®rg — UPH (g)).

( and BF Theory. (See Cattaneo-Rossi,
arXiv:math-ph/0210037) Let A denote a g-
connection on S* with curvature Fy, and B a
g*-valued 2-form on S%.  For a hoop 7, let

w] z Yy w and the ay,’s are
U | Quz  Quy rational functions in
U Quz Quy variables t,, one for [’
each u € T. Wi metd
w wy | Hy L w2 | Hy
u |« e Ti|aa T
tm%’ v /8 — w a+/8 , o)) | Hy H ,
0% = T1 (05} 0
v T2 0 (6 %)
wl|T oy - w z
hmiy Lo | . | )
: ‘ a B v ‘ a+ B+ (B v
w | x we | x
tha"*: u|a B o u |all+0)/e) BL+(y)/e)
v 6 : v/€ o —B/e
where € := 1+, (@) 1= 3, ay, and () 1= 3, ., Vv, and let
1 x 1 T
+ . - .
w T T 1 T T e
On long knots, w is the Alexander polynomiall

7 ,”\\I
hol, (A) € U(g) be the holonomy of A along ;. ‘liCat'taneo
For a ball v,, let O,,(B) € g* be (roughly) the
integral of B (transported via A to 00) on .

Loose Conjecture. For v € K(T; H),
/ DADBel P T OB K hol,, (4) = €7 (¢(7))-

That is, ¢ is a complete evaluation of the BF TQFT.

‘Why happy? An ultimate Alexander inva-
riant: Manifestly polynomial (time and si-j&
ze) extension of the (multivariable) Alexan-
der polynomial to tangles. Every step of thel
computation is the computation of the inva-"
riant of some topological thing (no fishy Gaus- @& 3
sian elimination). If there should be an Alexander mvamani
with a computable algebraic categorification, it is this onel

4 [See also (wef/regina) wef/caen, wef /newton.

(a ~ “God created the knots, all else in
‘= topology is the work of mortals.”

lay class: wef/aarhus Class next year: wef3/1350)

Leopold Kronecker (modified) www.katlas.org 7”75 K:

Paper: weB/kbh
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Videos of all talks are available at their respective web pages

Dror Bar-Natan: Talks: Geneva-131024:

Finite Type Invariants of Ribbon Knotted Bal

w :=http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024 E ™

Abstract. On my September 17 Geneva talk (w/sep) I de-
scribed a certain trees-and-wheels-valued invariant ¢ of rib-
bon knotted loops and 2-spheres in 4-space, and my October 8
Geneva talk (w/oct) describes its reduction to the Alexander
polynomial. Today I will explain how that same invariant
arises completely naturally within the theory of finite type

Action 1.

Abh:(@

loons and Hoops
e

o

My goal is to tell you why such an invariant is expected, yet

invariants of ribbon knotted loops and 2-spheres in 4-space. T H - B
) degree:# of arrows <—i =0 c
balloons/tails\ =~~~ oo oo o N > ><
bh (T‘ H)
T ) (then connect usmg N
v v T '_> xings or v-xings)
ribbon  R? ¢
o0 m o Derlvmg AT \ R3, }{ey: use &
Start from A=<+
H \ oussarov-Polyak-Viro
FL(T)? x CW(T)
hoops/heads “trees” “wheels” Q .
in In/In-i-l

not to derive the computable formulas. tﬁ w M_’—ﬁ # m
R I B S :
Disturbing o SL >R2 using TC U
Conjectur W / / Action 2.
d c c d
2 08 0 ]
K = Q U v Q:m ;jl ‘ Z: p ﬁ\'_>a - = + +3 4.
| M Exercise.
2 N fog soleec O = TN == NI i
Satoh cp TC ar —= TC —/—>‘ erty U.
Dictionary. y < b T =T= % >{}< ) The Bracket-Rise Theorem.
o\ ° ° CP B,
“y-xing” /<< m ‘L / >< b ~o / STU B
I e T
blue is never “over” (2 in 1 out vertices)/ | Telations
Expansions

2 SN SO NEL

Let " := (pictures with > n semi-virts) C K.
We seek an “expansion”
Z: KM = gr K = (HI7/T7 =
satisfying “property U”: if v € Z", then
Z(y) = (0,...,0,7/T" % %,...).

the semi-virtual

Abh

X.-S. Lin

Y -\ Y X
B RN ot

Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels
persist.

Why? e Just because, and this is vastly more general.
. (leh /I”+1)* is “finite-type/polynomial invariants”.

Theorem. A is a bi-algebra. The space of its primitives is

FL(T)% x CW(T), and ¢ = log Z.

e The Taylor example: Take K C*[R"), T
{f e K: f(0)=0}. Then Z" = {f: f vanishes like |z|"} so
7" /Z™*! is homogeneous polynomials of degree n and Z is a
“Taylor expansion”! (So Taylor expansions are vastly more
general than you’d think).

Plan. We'll construct a graded A, a sur-
jective graded m: A — AP and a fil-
tered Z: K" — A" so that «  gr Z = Id

jlbh

A

/Cbh - Abh
Z

(property U: if degD = n, Z(r(D)) =
m(D) +
hi

(deg > n)). Hence e 7 is an iso-

g “God created the knots all else i in
| topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org 1t

¢ is computable! ¢ of the Borromean tangle, to degree 5:
cyclic colour
Yﬁz . % <permutat10ns >

for trees

%,

B .o[m)t

—

have a nice free-Lie
calculator'
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Videos of all talks are available at their respective web pages
bt b7y droton et ACaen coonsicnes 5014-04/B12C A Partial Reduction of BF Theory to Combinatorics, 1
continueshttp://www.math.toronto.edu/~drorbn/Talks/Vienna- 1402
Abstract. | will describe asemi-rigorous reduction of perturbg/'€ BF Feynman Rulegor [=] [=]
tive BF theory (Cattaneo-RossCR]) to computable combind®" €dgee, Ig:t Pe 1be its di- ‘
torics, in the case of ribbon 2-links. Also, | will explain \m;ectlon inS®orS*. Letws % ) Horo WiIF
and why my approach may or may not work in the non-rib 1 be volume forms on ;%= N i [m] 25
case. Weak this result is, and at least partially already kntﬁvrf"ndsl' Thenfor a 2-link ™ aneo Rossi
(Watanabe\[Va)). Yet in the ribbon case, the resulting invarian ‘FS)tGT’
ayniversal finit_e_ type invariant, a gadget thgt signifigaggner = log Z [D] f f f f ch*wg l—[ Ddw
alizes and clarifies the Alexander polynomial and that isel d.ag,amJAUt(D)| black
related to the Kashiwara-Vergne problem. | cannot rule bet t s vertices M -vertices =
possibility that the corresponding gadget in the non-ribbasds an invariant inCWFL(T)) — CWT)/~, “symmetrized cyclic

will be as interesting. (good news irhighlight) words inT".
BF Following [CR]. A € QY(M = R4, g), B Q3(M, g, “

S(A.B) = [ (B.F.

With x: (S=R?) — M,B € shzﬂo(s, a), @ € QXS, g*), set
O(A, B, k) = f DBDa exp(% L B, depax + K* B)).
Decker Sets (“2D Gauss Codes/).

A BF Feynman Diagram.

YA
i 3’\}
rattle

wn =

trees
on wheels,

odd edges
even rattles

(only double curves
are allowed in

I
I
I
I
: !
A | __ . ribbon 2-knots)

_______ “a branch point”
Some Examples.~

<9 |
n P A LT Y @l < L 7
. AN N | ' |
=, \ i ( N
| N
Dt %,
N

Y

|
|
|
\
|

|———1

~.«,,--“=“\§\‘:;\~ R

____________

“ribbed c‘i'gar preééntatio
A 2-twist spun trefoiby Carter
Kamada-SaitoCKS].



http://drorbn.net/AcademicPensieve/2014-04/BF2C
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Videos of all talks are available at their respective web pages

b topo/ droron et acadanscoonsiover so14-84/Bv2C A Partial Reduction of BF Theory to Combinatorics, 2
heorem 1 (with Cattaneo, Dalvit (credit, no blame#) the rib-, Sketch of Proof. In 4D ax- 4~ -
bon casegf can be computed as follows: ial gauge, only “drop down” red : ! |
propagators, hence in the ribboni 1 ' _|__
P case, noM-trivalent vertices.S integrals aret1
K ! m iff “ground pieces” run on nested curves as below
L ﬂ and exponentials arise when several propagato!
e Z H*E'Hm J J J llw compete for the same double curve. And then the
Wrdo Cklmb combinatorics is obvious. ..
oIS
N 2 P2 (e
_ k O“ 6 g1/
a g W’
e D (DO i
b L m e N gl Musings . __
b Chern-Simons.When the domain of BF is restricted to ribbon
— - — knots, and the target of Chern-Simons is restricted to taeek
RS e sann =3 wheels, they agree. Why?
! Is this all? What (’*’\ '
Theorem 2. Using Gauss diagrams to represent knots @ngbout the/-invariant? —
component pure tangles, the above formulas define an imégtiee “true” triple link- %\WZ
in CWFL(T)) - CWT), “cyclic words inT". ing number) O G D \Q/ g
e Agrees with BN-DancsogND] and with BN2]. e In-practice, _ _ ______~_ X %Y _ _________________=<__
computable!s Vanishes on braidse Extends to w.e ContainsGnots. In 3D, a generic immersion @& is an
Alexander.e The “missing factor” in Levine’s factorizatiorLg] embedding, a knot. In 4D, a generic immersio
(the rest of Le] also fits, hence contains the MVA9.Related taof a surface has finitely-many double points
extends Farber's{g? e Should be summed and categorifiedgnot?). Perhaps we should be studying these?
References. Finite type. What are finite-type
[Ar] V. I. Arnold, Topological Invariants of Plane Curves and Caustidsi- jnvariants for 2-knots? What
versity Lecture SerieS, American Mathematical Sopiety_ 1994. would be “chord diagrams”?
[BN1] D. Bar-Natan,Bracelets and the Goussarov filtration of the space of . _ _ __ _ __ ___~_ ___________>“—_______%=7__
knots, Invariants of knots and 3-manifolds (Kyoto 200Ggometry andBubble-wrap-finite-type.
Topology Monographd 1-12,arXiv:math.G70111267 There's an alternative deﬁn@@_@
BN2] D. Bar-Natan, Balloons and Hoops and their Universal Hi- T :
[ nit]e Type Invariant, BF Theory, andp an Ultimate Alexander- I:Ir(?n of finite type in 3D, due
variant, http://www.math. toronto.edu/~drorbn/papers/KBH/, o Goussarov (SG@N].]) The
arXiv:1308.1721 obvious parallel in 4D involves
[BND] D. Bar-Natan and Z. Dancso,Finite Type Invariants of Wrbubble wraps”. Is it any good? ==
Knotted Objects: From Alexander to Kashiwara and Vergne - - - - - - - - - - _ _ _ _ _ _________ §
http://www.math. toronto.edu/~ drorbn/papers/WK0, . Shielded tangles.In 3D, one can’t zoom in and compute “the
[CKS] J. S. Carter, S. Kamada, and M. Salldagrammatic Computations foa€hern-Simons invariant of a tangle”. Yet there are well+tedi
[Cgujmg'eé af;d Cozyﬂe gnf:;nvgfignﬁofmemp- '\gatt:3_18d(_2003r)r§;;4- invariants of “shielded tangles”, and rules for their corsitions.
. o. Carter an . Saltgynottea surfaces an elr diagral e-
matical Surveys and Monograp8S, American Mathematical gSociety, ProWhat would the 4D analog be?.
idence 1998. ® @
[Da] E. Dalvit,http://science.unitn.it/~dalvit/.
[CR] A. S. Cattaneo and C. A. Rossiilson Surfaces and Higher Dimen-
sional Knot Invariants,Commun. in Math. Phys256-3 (2005) 513-537 “an associator”
arXiv:math-ph0210037
[Fa] M. FarbeFr),hNoncommutative Rational Functions and Boundary LIIWIII the relationship with the Kashiwara-Vergne probleBND]
Math. Ann.293 (1992) 543-568. necessarily arise here?
[Le] J. Levine,A Factorization of the Conway Polynomiallomment. Math|P|ane curves.Shouldn’t we understand integrafinite
Helv. 74 (1999) 27-53arXiv:q-alg9711007 _ - lype invariants of plane curves, in the style of Amol
[Ro] D. RosemanReidemeister-Type Move'_s fo_r Surfaces in Four-Dimensi J , andSt[Ar], a bit better?
SpaceKnot Theory, Banach Center Publicatio#(1998) 347-380. Armold
a] T. WatanabeConfiguration Space Integrals for Long n-Knots, the Alexan-
[Wd]er Polynomia(lfnd I?not SpacepCOhomglong.and Ggeom. Top7 (2007) a¥)a) a0 | oo O @ G Goo)---
47-92,arXiv:imath0609742 1 0 0 0 0 1 2 <.
Continuing Joost Slingerland. .. g {2) m_g 7? g j ::
2 http://youtu.be/YCAQVIExVhge -
@ “God created the knots, all else in
> ° @ . topology is the work of mortals.”
http://youtu.be/mHyTOcfF990 Leopold Kronecker (modified) www.katlas.org
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Convolutions on Lie Groups and Lie Algebras and Ribbon 2—Knotglaimer: | "God created the knots, all else
} Rough edges topology is the work of mortals,
Dror Bar-Natan, Bonn August 2009, http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908:.emain! Leopold Kronecker (modifiedfi
SR A s e W;;;“""‘E]The Bigger Picture... hat are w-Trivalent Tangles? (PA :=Planar Algebra)
e e o [ ™ knots | _ \ A\ _> >’,>< NN
,.II..,.:ZE.;:,_-’ 2 {@}QQ%M&“/"QT“\?”“‘:‘“F“”“” Convolutions The Orbit {&links =PA N R123: /37 s (\_ VANV ¢
8~ ) f)% % e OO, [ Do ™ R statement |, =~ Method 0 legs
I tﬁ Reemla (<l SN TR $ trivalent N ‘
N = Kinces om santaces, o siblazation: T | 'nuxwvmlﬂ:
& e @ @Q A = Group-Algebra\  Subject { 1 }:PA K, )\ R23, R4 : @ =)\=¢Q
R = = statement flow chart tangles A
a é ==X
£ Unitary wTT=
il tat t .
, statren Free Lie trivalent | PA w- unary w-
; =% }/ Yoy Algebvrai . statement w-tangles | generators relatlons operations
i‘ \4
g lmm!!wmi”l ALGEBRAS statement The W—generatOF\S\ : (@) O : Broken surface : O O :
i i Alekseev
V . = - " = O =
) Dlagrdnvlmdmc/Torossmn A= ®:> o /> 2D Symbol = Cé =
" ie 7 statement statement \( : @ : >>/ : [\ :
%é’"”“m‘ _xﬂéf >—< E:w"m‘ EOME: o 1 >\," | ) - /<< - O |
by gROR z . - C) - . - Q -
_A_ Y.Y o |[Knot-Theoretic True . = O o H o\ D_Im. reduc. fele)-
g Sl statement  Aackeseymoross Crossmg = % Virtual crossing Moviejs =
Vertices

Alekseev

Torossian
2

R
7 EA S B

omomorphic expansions for a filtered algebraic structure K:

OpSGIC = IC() D) ]C1 o K
Y lz
ops—grkC = ICo/’Cl D ’Cl/ICQ D ICQ/’Cg D ’Cg/K:4 D ...
An expansion is a filtration respecting Z : K — grC that
“covers” the identity on grXC. A homomorphic expansion is
an expansion that respects all relevant “extra” operations.

D K3 D...

A Ribbon 2- Knot is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D; in the interior of B and

/-& %R R-R

iltered algebraic structures are cheap and plenty. In any
IC, allow formal linear combinations, let K; be the ideal
generated by differences (the “augmentation ideal”), and let
[Crm, := ((K1)™) (using all available “products”).

he w-relations 1nclude R234, VR1234, M, Overcrossings
Commute (OC) but not UC, W? = 1, and funny interactions
between the wen and the cap and over- and under-crossings:

"An Algebraic Structure"
O = (0
— T
4
- (o D=

e Has kinds, objects, operations, and maybe constants.
e Perhaps subject to some axioms.
e We always allow formal linear combinations.

objects of
kind 3

no‘ —Z—
R — \/ as =N ;K/ N << yet notT ‘ T
o Challenge.
_e—? F as_ﬂ_e %L\:Dothe
: Reidemeister!
| »r
—tw S |
e e f%ﬁ ] A
W > |
: Reidemeister Winter
%)
>5 <
T =
c ®© — = — =
23 { /AK @ ﬂ ﬂ
£° \\ AN \
= Unzip along an annulus Unzip along a disk

xample: Pure Braids. PB, is generated by x;;, “strand i
goes around strand j once”, modulo “Reidemeister moves’
A, := gr PB,, is generated by t;; := x;; — 1, modulo the 4T
relations [t;;,t;x + t;1] = 0 (and some lesser ones too). Much

happens in A,, including the Drinfel’d theory of associators.

> Qust for fun.

The set of all
b/w 2D projec-
tions of reality

7 N

K/Ki—K/Ke— K/Kg+— K/K4

)

Our case(s).
Z: high algebra

given a “Lie”
algebra g

A=
gr K

“«y (g)au
solving finitely many
equations in finitely
many unknowns

)C is knot theory or topology; grC is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

low algebra: pic-
tures represent
formulas

l?uﬂﬂﬁ

K/Ki®K1/Ke®K2/KsdKs/Ka®Ka/Ks® Ks/Ke®

An expansion Z is a choice of a
“progressive scan” algorithm.

Crop
rotate

[1] http://glink.queensu.ca/~4lb11/interesting.html 29/5/10, 8:42am
Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

Il Il
R ker(K/K4—K/K3)

adjoin
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Knot-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:

< /
Vs L

Ve

(1)

(2) (3)

From wT'T to A", gr,, wI'T := {m—cubes}/{(m+1)

forget
topology
Polyak

cubes}

Vassiliev

Goussarov

w-Jacobi diagrams and A. AY(Y T) =2 AY(117) i

4T:L»H+LF:I=F’H+FF:I

Diagrammatic statement. Let R = exp™ € A" (]1). There

exist w € AY(T) and V € A*(11) so that

WYY el
WL fsro=l N YL Y

O 4 4 4t

deg=1#{vertices}=6
Diagrammatic to Algebraic. With (z;) and (¢’) dual bases of
g and g* and with [;vi, x| = bejxk, we have AY — U via

bk

4(Ig)/U(g ) = S(g*) the obvious projection, with S the an-
tipode of U (Ig), with W the autommphlsm of U(Ig) induced
v flipping the sign of g*, with € g* ® g the identity element
and with R = e” € U(Ig) ® U(g) there exist w € S(g*) and |°
V € U(Ig)®? so that

(1) V(A ®1)(R) = R®R®V in U(Ig)®2 @ U(g)

(2) V-SWV =1 3B) (c®c)(VAWw)) =wRuw

T T /><\ Penrose CV|tanOV|c
w w T,
d1m g
Z bz kl§0 QO xnmeO S U(Ig)
i’j7k7l7m7n:1
Unitary <= Algebraic. The key is to interpret ¢/(Ig) as tan-
Algebraic statement. With Ig == g* x g, with ¢ : U/(Ig) — gential differential operators on Fun(g):

e © € g* becomes a multiplication operator.

e © € g becomes a tangential derivation, in the direction of
the action of ad x: (z¢)(y) := ¢([x,y]).

¢:U(Ig) — U(Ig)/U(g) = S(g*) is “the constant term”.

Unitary = Group-Algebra. // w;z;+?/em+y¢(az)1/1(y)
(g SIS ) )~ (Vi1 VE TSNS ()i 1,

Unitary statement. There exists w € Fun(g)“ and an (infinite
order) tangential differential operator V' defined on Fun(g, x
g,) so tha that

(1) Verts = &gy (allowing U(g)-valued functions)
R)VV =T  (3) Vweyy = waty

= <w:1:w’y7 emeyv¢(m)w(y)wﬂf+y> = <W:L'wilja exey(p(x)w(y)wi'waI)

[ eers@pw.

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, 7 : G — A is multiplicative then

Group-Algebra statement. There exists w? € Fun(g)® so that

for every ¢, 1/1 € Fun(g)® (with small support), the following
holds in Z/{ (shhh, w? = j1/?)
//¢ /2+ x+y_//¢ emey
r+y
gxg gxg (shhh7 this is Duflo)

(Fun(G),x) =2 (A,-) via L: f— > f(a)7(a). For Lie (G 9),

Convolutions statement (Kashiwara-Vergne). Convolutions of
invariant functions on a Lie group agree with convolutions
of invariant functions on its Lie algebra. More accurately, |®
let G be a finite dimensional Lie group and let g be its Lie
hlgebra, let j : g — R be the Jacobian of the exponential
map exp : g — G, and let ® : Fun(G) — Fun(g) be given
by ®(f)(z) := JL/Q( ) f(expz). Then if f,g € Fun(G) are
Ad-invariant and supported near the identity, then

D(f) *2(g) = 2(f *g).

(9.4) 22 === ¢ € S(g) Fun(g) —*— &(g)
lexp&\ lx SO l@l l
(G, Bez#ezea( ) Fun(G ) Z](g
with Loy = [4(z)e*dr € S(g) and L;d~ 1y = fd) z)e”
Ll(g). Given 1; € Fun(g) compare ®~'(¢1) x &1 (¢)2) and

(wl * 111)2 in L{( ) (shhh, Ly, are “Laplace transforms”)

% in G : //¢1 Yo (y)ee *xin g : / 1 (x)1ha (y)e™ Y

'We skipped... e The Alexander e v-Knots, quantum groups and
polynomial and Milnor numbers. Etingof-Kazhdan.

e u-Knots, Alekseev-Torossian, ® BF theory and the successful
and Drinfel’d associators. religion of path integrals.

e The simplest problem hyperbolic geometry solves.




