Minsky@Blyth: Complexity in surfaces and 3-manifolds, 3

Today: cutting along compressible surfaces. Motivation:
$M=\mathrm{H}^{+} \cup \mathrm{H}^{-}$
$H^{ \pm}$: handlobodics
"Heogrard splitting" of genus 9
very compressible
Good news: Heegard splittings alwargs exist Bat news: There are too many of them. Fix genus g, pict gluing map $\psi: 2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}^{-}$.
Def $\psi: \sum \rightarrow \sum$ is pseudo-Anosou (ψA if it is irreducible: Fixes no finite collection of isotopy classes of curves.
The $M_{\psi}:=\sum x[0,1] /(x, 0) \sim(\psi(x), 1)$ is hyperbolic if Ψ is pseudo-Anosor Let \hat{M}_{ψ} be the $\underset{\text { obvious }}{\mathbb{Z}}$-cover of M_{ψ}. Given ψA, it is also hyperbolic.

Thy Let $H^{ \pm}, \sum$ be fixed, $\psi_{:} \sum \sum$ be $\underset{(\text { needs definitici) }}{\text { gene }} \underset{\operatorname{ric}}{ } \psi A$. Let $N_{m}=H^{+} V_{\psi m} H^{-}$.

For large m, N_{m} is hyporbolic. Moriover, V_{m} has a "model metric"

which is k-biliph isomorphic to the hyporbolic metric. (uniformly in m)

Thurston's double-limit theorem. Let \sum_{g} be fixed,

$$
\rho_{n}: \pi, \Sigma_{g} \longrightarrow \operatorname{PSL}(2, \mathbb{C})
$$

discrete, faithful, \exists curves α_{n}, β_{n} on \sum_{g}

$$
\begin{aligned}
& \text { is tor classis } \\
& \text { io simple closed }
\end{aligned}
$$

s.t. $* l\left(\rho_{n}\left(\alpha_{n}\right)\right), l\left(\rho_{n}\left(\beta_{n}\right)\right)$ bounded.
$* \alpha_{n} \longrightarrow \lambda$ a lamination on \sum

$$
\beta_{n} \longrightarrow \mu
$$

such that λv_{μ} binds $\sum: \sum \backslash \in \mu$ is α union of disks.
Then ρ_{n} has a subsequence that converges up to conjugacy in PSL $(2,1)$ Lamination:

