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%ﬁtmcL I'will describe a semi-rigorous reduction to computable
combinatorics of perturbative BF theory (Cattaneo-Rossi [CR]),
in the case of ribbon 2-links. Also, I will explain how and why my
approach may or may not work in the non-ribbon case. Weak this
result is, and at least partially already known (Watanabe [Wa]).

type mnvariant, a gadget that significantly generalizes and clari-
ffies the Alexander polynomial and that is closely related to the
Kashiwara-Vergne problem. I cannot rule out the possibility that
the corresponding gadget in the non-ribbon case will be as inter-
esting_ (good news in highlight)

Yet in the ribbon case, the resulting invariant is a universal finite [
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BF Following [CR]. 4 € Q'(M = R*,q), B € Q*(M,q"),
S(4,B) = f(B. Fyq).

With /: (S =R?) —» M, e g“(S.g),ﬂ € Q!(S,q"), set

O(4, B, f) = f DEDBexp (% 1 (e.dprap+ _/‘B)).

Decker Sets (*2D Gauss Codes™).

A BF Feynman Diagram.
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*“a double curve”
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*a branch point™

Some Examples.
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Abartial R¢duction of BF Theory to Combinatorics, 2

eorefn. x of any ribbon 2-knot/link can be computed as
ows, gnd the result agrees with BN-Dancso [BND] and wit
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___________ Musings

mons. When the domain of BF is restricted to ribbon
knotsyand the target of CS§ is restricted to trees and wheels, they

the v-ipvariant?
(1k 7

e Fune”

Gnots. In 3D, a generic immersion of S is an em-
bedding, a knot. In 4D, a generic immersion of a
surface has finitely-many double points (a gnot?).
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Gnots. In 3D, a generic immersion of S is an em-
bedding, a knot. In 4D, a generic immersion of a
surface has finitely-many double points (a gnot?).
[Perhaps we should be studying these?

Finite type. What arc finite-type  gmm =~ @
invariants for 2-knots?  What
would be “chord diagrams™?

Sketch of Proof. In 4D axial gauge, only “drop :_ ! _:
down” red propagators, hence no M-trivalent ver- 1

tices. § integrals are +1 iff “ground pieces™ run - - -

lcombinatorics is obvious. ..

Rl

on nested curves as below, and exponentials arise when several
propagators compete for the same double curve. And then the

Bubble-wrap-finite-type.

Ihere’s an alternative  defi-
mition of finite type m 3D, due
to Goussarov (see [BN2]). The
obvious parallel in 4D involves
“bubble wraps™. Is it any good?

[Shielded tangles. In 3D, one can’t zoom in and compute “the
Chem-Simons mvariant of a tangle™. Yet there are well-defined
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lnts of plane curves, in the style of Arnold’s J*, J~, and St [Ar],
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