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A Partial Reduction of BF Theory to Combinatorics, 1

Abstract. I will describe a semi-rigorous reduction to computable
combinatorics of perturbative BF theory (Cattaneo-Rossi [CR]),
in the case of ribbon 2-links. Also, I will explain how and why my
approach may or may not work in the non-ribbon case. Weak this
result is, and at least partially already known (Watanabe [Wa]).
Yet in the ribbon case, the resulting invariant is a universal finite
type invariant, a gadget that significantly generalizes and clari-
ffies the Alexander polynomial and that is closely related to the
Kashiwara-Vergne problem. I cannot rule out the possibility that
the corresponding gadget in the non-ribbon case will be as inter-
esting. (good news in highlight)

[The BF Feynman Rules. For
an edge e, let @, be its di-
rection, in S% or S'. Let w;
and w; be volume forms on ;
3 and S;. Then fora 2-link . .
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is an invariant in CW(FL(T)) — CW(T), “cyclic words in 7.
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BF Following [CR]. 4 € Q'(M = R*, ), B€ Q*(M,q"),
S(A.B) = f (B.Fy).
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Decker Sets (*2D Gauss Codes™).

1

1
'
1
1

A BF Feynman Diagram.
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Some Examples.
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Combinatorics, 2

A Partial Bdction of BF Theory td
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Theorem 1.\for any ribbon 2-knot/link, ¢ can be computed as |
follows: //__,,__—_—___—_—:_H
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etch of Proof. In FD ax- -

gauge, only “dro fown“ Lo
I yed propagators, hence%no M-' }
trivalent vertices. § integrals are =1 iff “ground
pieces” run on nested curves as below, and expoq
mentials arise when several propagators compete
for the same double curve. And then the combi
natorics is obvious. ..
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Chern-Simons. When the domain of BF is restricted to ribbon
knots, and the target of CS is restricted to trees and wheels, they

[Theorem 2. Using Gauss diagrams to represent knots and 7-
component pure tangles, the above formulas define an nvariant
in CWFL(T)) — CW(T), “cyclic words in T,

» Agrees with BN-Dancso [BND] and with [BN1]. » In-practice
computable! o Vanishes on braids. » Extends to w. e Contains
lAlexander. » The “missing factor”™ in Levine’s factorization [Le]
the rest of [Le] also fits, hence contains the MVA). » Related to
extends Farber’s [Fa]? » Should be summed and categorified.

agree. Why?
Is this all? What
labout the v-invariant?
the “true” triple link-

ling number) O=C|+D

(Ginots. In 3D, a generic immersion of §' is an
embedding, a knot. In 4D, a generic immersion
ol a surface has finitely-many double points (a
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Finite type. What are finite-type
invariants for 2-knots?  What
would be “chord diagrams™?

[Bubble-wrap-finite-type.

There’s an alternative defini-
tion of finite type in 3D, due
to Goussarov (see [BN2]). The
obvious parallel in 4D involves
“bubble wraps™. s it any good?

[Shielded tangles. In 3D, one can’t zoom in and compute “the]
Chem-Simons mvariant of a tangle™. Yet there are well-defined

“an associator”
[Will the relationship with the Kashiwara-Vergne problem [BND]
necessarily arise here?
Plane curves. Shouldn’t we understand integral / finite
type invariants of plane curves, in the style of Amold’s
U+, J7, and St [Ar], a bit better?
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invariants of “shielded tangles™, and rules for their compositions,| [
(What would the 4D analog be? Q
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