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A Partial Rcduct‘on of BF Theory to Combinatorics, |

Abstract. I will describe a semi-rigorous reduction to computable
combinatorics of perturbative BF theory (Cattaneo-Rossi [CR]),
in the case of ribbon 2-links. Also, I will explain how and why my
approach may or may not work in the non-ribbon case. Weak this
result is, and at least partially already known (Watanabe [Wa]).
Yet in the ribbon case, the resulting invariant is a universal finite
type invariant, a gadget that significantly generalizes and clari-
fies the Alexander polynomial and that is closely related to the
Kashiwara-Vergne problem. I cannot rule out the possibility that
!lhc corresponding gadget in the non-ribbon case will be as inter-
lesting. (good news in highlight)
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BF Following [CR]. 4 € Q'(M =R%,q), B € QX (M. g"),
S(4.B) = f (B, Fy).

With f: (S =R?) —» M,é¢ S“I"’(S.g),ﬁ € Q'(S.g"), set

01.B./) = fm)ﬂexp( f(f draB+ S B))

A BF Feynman Diagram.
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Theorem 1. For any ribbon 2- k_nutflmk e’ can be wmputed as.

‘W'red propagators, hence no M-_ _i o L _|
trivalent vertices. S integrals are <1 |ﬂ *ground
pieces” run on nested curves as below, and expo
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nentials arise when several propagators compete
for the same double curve. And then the combi
natorics is obvious. ..
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Chern-Simons. When the domain of BF is restricted to ribbon
nots, and the target of CS is restricted to trees and wheels, they
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[Theorem 2. Using Gauss diagrams to represent knots

in CW(FL(T)) — CW(T), “cyclic words in T".

component pure tangles, the above formulas define an invariant

e Agrees with BN-Dancso [BND] and with [BN1]. e In-practice
computable! o Vanishes on braids.  Extends to w. e Contains
\Alexander. » The “missing factor” in Levine’s factorization [Le]
the rest of [Le] also fits, hence contains the MVA). » Related to
extends Farber’s [Fa]? & Should be summed and categorified.

agree. Why?
Is this all?
about the v-invariant?
the “true™ triple link-
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Gnots. In 3D, a generic immersion of §' is an
embedding, a knot. In 4D, a generic immersion
of a qurl"ace has fi nittal)-r many douh]e pninla (a
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obvious parallel in 4D involves
“bubble wraps™. Is it any good?

Shielded tangles.
Chern-Simons invariant of a tangle”.
invariants of “shielded tangles”,

What would the 4D analog be? a
® “an associator” ’

Will the relationship with the Kashiwara-Vergne problem [BND]

necessarily arise here?

Plane curves.

J*, J7, and St [Ar], a bit better?

In 3D, one can’t zoom in and compute “the
Yet there are well-defined
and rules for their compositions.

Shouldn’t we understand integral / finite
ype invariants of plane curves, in the style of Amold’s

Amold
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1 “God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker {modified)
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