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combinatorics of perturbative BF theory (Cattanco-Rossi [CR]), g edge e, let . be its di-

in the case of ribbon 2-links. Also, I will explain how and why my rection, in S qrs'. Letws
approach may or may not work in the non-ribbon case. Weak this and w; be volyme forms on W
result is, and at least partially already known (Watanabe [Wa]). S 3 and §y. Thyn fora 2-link Rosii
Yet in the ribbon case, the resulting invariant is a universal finite et

type invariant, a gadget that significantly generalizes and clari- = log Z"'j f f f lws lw)
fies the Alexander polynomial and that is closely related to the dingra IR IR e blM D)
Kashiwara-Vergne problem. I cannot rule out the possibility that S-vertices .,, vertices

the corresponding gadget in the non-ribbon case will be as inter- is an invariant in CW(FL(T)) — CWA(T), “cyclic words in 7.
esting. (good news in highlight)
BF Following [CR]. 4 € Q'(M = R* q), B € Q}(M,g"),

S(4,B) -—f(B Fy).
With f: (S = R?) = M, £ € Q%S.qg). 8 € Q'(S.q%), set
O, B. /) = f .'DEDb’exp(- j (& d,,,pw'a)).
Decker Gets( 2D Gauss Codes™).
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IAbstract. I will describe a semi-rigorous reduction to computable The BF Feynmah Rules. For
E f\

A BF Feynman Diagram.
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Some Examples.

2-twist spun trefoil by Carter-
amada-Saito [CKS].
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;} ]}]‘;":‘sm 1. For any ribbon 2-knoylink, * can be computed as gy o1, of proof. In 4D axial gauge, only “drop 4 T

I “‘¥ down™ red propagators, hence no M-trivalent ver- 1§+ 1o
Yo

I,// e tices. § integrals are =1 iff “ground pieces” run -~ - -~ -
if I f\_,_! VY }SX on nested curves as below, and exponentials arise when several
- AR propagators compete for the same double curve. And then the
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(+f =" 1 UChcm-Simuns, When the domain of BF is restricted to ribbon
b *;0 lm! £ knots, and the target of CS is restricted to trees and wheels, they

—) agree. Why?
= i Is this all?  What
_\@_}m::\/\x—_’x about the v-invariant? \ .

the “true” triple link-
Theorem 2. Using Gauss diagrams to represent knots and 7- ing number) O G D
component pure tangles, the above formulas define an mvarant | ________ ~—_ ~ < ______~____________ 7 __
in CHW(FL(T)) = CW(T), “cyclic words in T, Gnots. In 3D, a generic immersion of §' is an
e Agrees with BN-Dancso [BND] and with [BN1]. e Vanishes embedding, a knot. In 4D, a generic immersion
jon braids.  Extends to w.  Contains Alexander. » The “missing of a surface has finitely-many double points (a
factor” in Levine's factorization [Le] (the rest of [Le| also fits, gnot?). Perhaps we should be studying these?

hlence contains the MVA). » Rel_a‘tcd to / extends Farber’s [Fa]? » [ iic type. What are finite-type

[Should be summed and categorified. invariants for 2-knots? What
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