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Abstract. 1 will describe a semi-rigorous reduction to computable [[he BF Feynman Rules. For 9

combinatorics of perturbative BF theory (Cattaneo-Rossi [CR]), pn edge e, lg . Pe its di-
in the case of ribbon 2-links. Also, I will explain how and why my fection, in = jor §*. Let w; o,
approach may or may not work in the non-ribbon case. Weak this fd @ be volime forms on i AVAILABLE
result is, and at least partially already known (Watanabe [Wa]). S* and S r“ fora 2- l'“k
Yet in the ribbon case, the resulting invariant is a universal finite [/ er
lypc invariant, a gadget thal. signiﬁcanlly generalizes and clari- Iog @ f f f f l—l Dl @0,
fies the Alexander polynomial and that is closely related to the disgams D VB IR IR IR \4ep HM ceD
Kashiwara-Vergne problem. I cannot rule out the possibility that S S et Moo
the corresponding gadget in the non-ribbon case will be as inter- fis an invariant in CW(FL(T)) — CW(T), “cyclic words in 7.
esting. (good news in highlight)
BF Following [CR]. 4 € Q'(M = R*,g), B € Q(M.g"),
S(4.B) = j (B, Fy).

M
With /: (S =E?) —» M, £ € Q%(S.q). f € Q'(S.9"), set

O(4.B. [) = f .’DfD/}cxp(% J; (f.d,~,4ﬁ+j‘8)).
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Cattaneo Rossi

A BF Feynman Diagram.
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*“a branch point”
Some Examples.

A 4D knot by Dalvit [Da]

2-twist spun trefoil by Carter-
amada-Saito [CKS].
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Theorem. Z = & of any ribbon 2-knot/link can be computed

with [BN1].
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Zé_ D =) FJ 1 hhj
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Sketch of Proof. In 4D axial gauge, only “drop | : i _:
down™ red propagators, hence no M-trivalent ver- { ——tef
tices. § integrals are =1 iff “ground pieces” run - -~ - - - -

on nested curves as below, and exponentials arise when several
propagators compete for the same double curve. And then the
combinatorics is obvious. ..

(0

as follows, and the result agrees wit_h_ﬂ\lﬂancsu [BND] andchern-Simons. When the domain of BF is restricted to ribbon
_':h-H\ agree. Why?
R Is this all?  What - -

1 i about the v-invariant? \\

J ing number) O=G+D

Kttm! e/ S — .
Gnots. In 3D, a generic immersion of §' is an
| =,
- . i s _fembedding, a knot. In 4D, a generic immersion
a i_} 'E—I—lC 1 | |pfa surface has finitely-many double points (a
i, Z (=" j :ﬂ J 1 Yenot?). Perhaps we should be studying these?
b imo Kt 1 Finite type. What are finite-type

Musings

knots, and the target of CS is restricted to trees and wheels, they

the “true” triple link- \J

finvariants for 2-knots?  What
ould be “chord diagrams™?
[Bubble-wrap-fimte-type.
[There’s an alternative defini-
tion of finite type in 3D, due
to Goussarov (see [BN2]). The
obvious parallel in 4D involves
“bubble wraps™. Is it any good?

[Shielded tangles. In 3D, one can’t zoom in and compute “thg
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Chern-Simons invariant of a tangle”. Yet there are well-defined
invariants of “shielded tangles”, and rules for their compositions
What would the 4D analog be?

Plane curves. Shouldn’t we understand integral / finite
type invariants of plane curves, in the style of Amold’s
U*, J~, and Sr [Ar], a bit better? Amold
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Top. 7(2007)47-92, arXiv:math/0609742.

=1 “God created the knots, all else in 4
topology is the work of mortals.”

Leopold Kronecker {modified)
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