Rinat Kashaev on Beta pentagon relations

The (quantum) pentagon relation underlies the existing constructions of three dimensional quantum topology in the combinatorial framework of triangulations. Following recent works on constructions of TQFTs with infinite state spaces, I will discuss a special type of integral pentagon relations called beta pentagon relations, and their relationships with the Faddeev type operator pentagon relations.

Motivation: TQFT with ao-dinensiond vector spaces 2-3 Prchner Move:

$$
2+3=5 \text { "pentagon }
$$

Bildonhan - Elite identity on 6j-symbols:

$$
\begin{aligned}
& \mathbb{C} \neq\left\{\begin{array}{lll}
j_{01} & j_{02} & j_{33} \\
j_{23} & j_{13} & j_{12}
\end{array}\right\} \cdots T_{0123} \\
& \sum_{j_{3} f \mathbb{Z}} T_{0123} T_{0134} T_{1234}=T_{0234} T_{0124}
\end{aligned}
$$

(1) Replace $\mathbb{Z}_{>0}$ by a measure space (x, μ).
(2) Assume the X is a boldly compact Abolian group [has Haar measure]

Impose "gauge invariance": g!\{verticas $\} \rightarrow X$ un Jor $j_{k l} \leftrightarrow j_{k l}+j_{k}+g_{\ell}, \quad\{\therefore \because\}$ should rain invariance:
$\left\}\right.$ becomes a map $X^{2} \rightarrow \mathbb{C}$
(*) Now becomes the p-pentagon, identity

$$
\begin{gathered}
\left\{\begin{array}{ccc}
\left\{\begin{array}{lll}
j_{01} & j_{02} & j_{03} \\
j_{23} & j_{13} & j_{21}
\end{array}\right\} \rightarrow \varphi\left(j_{01}+j_{23}-j_{03}-j_{22}, j_{33}+j_{12}-j_{02}-j_{13}\right.
\end{array}\right) \\
\varphi(x, y) \varphi(u, v)=\int \varphi(u+y, v-z) \varphi(x+y+u+v-z, z) \\
\varphi(x+v, y-z) d z
\end{gathered}
$$

Symmetry: $\varphi(x, y) \leftrightarrow \tilde{\varphi}(x, y)=\varphi(-x,-y)$
Suppose $X=(R$, Then also a surprising symmetry.

$$
\varphi(x, y) \mapsto \tilde{\varphi}(x, y)=\int e^{2 \pi^{i}(x v-y u)} \varphi(u, v) d u d v
$$

Indices:

$$
\varphi_{1}(x, y) \varphi_{3}(u, v)=\int \varphi_{4}\left(u+y_{1}, v-z\right) \varphi_{2}(x+y+u+v-z, z)
$$

Example 1

$$
\left.\varphi_{j}(x, y)=B\left(a_{j}+i \mid x+y\right), b_{j}-i y\right) \quad a_{i,}, b_{i} \in\left(R_{>0}\right.
$$

Where $\quad B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$

