Mirror symmetry: Symplectic geometry "is" algebraic geometry (but on a different space).

Symplectic space (M,ω), ω closed non-deg 2-form like $(\mathbb{R}^{2n}, \sum dx_i \wedge dy_i)$

A Lagrangian submanifold is an n-dim submanifold LCM s.t. $\omega|_L = 0$.

Up to Hamiltonian isotopies [which sweep a Q-amount of area rel. ω]

On surfaces:

Lagrangians.

Lagrangian Floer homology measures intersection of Lagrangians, has a product structure.

Lagrangians make the objects of " Fukaya Aoo category".

The algebraic side \hat{M}, coherent sheaves over \hat{M}, derived category $\mathcal{D}^b(\hat{M})$
should be “derived equivalent” to the symplectic side.

This is a colloquium! Why are we doing this?