Willwacher: Jointly Orthogonal Polynomials
(joint work with G. Fielder)
dassical theory

- \langle,$\rangle an inner product on \mathbb{R}[x]$, typicdly

$$
\langle f, g\rangle=\int_{I} f(x) g(x) w(x) d x
$$

- Find a basis using Gram-Schmidt:

$$
e_{0}, l_{1}, \ldots . . \text { sit. }
$$

e_{n} is the unique $\neq 0$, up to scald in $V_{n-1}^{\perp} \subset V_{n} \subset \mathbb{R}[x]$
Poly's of deg

- Often solutions of ODES

$$
\begin{array}{ccc}
\text { Jacobi } & \text { Laguerre } & \text { Hermite } \\
I=(-1,1) & (0, \infty) & \mathbb{R} \\
w=(1-x)^{\alpha}(1+x)^{B} & w=x^{\alpha} e^{-x} & e^{-x^{2} / 2}
\end{array}
$$

$$
\uparrow
$$

$$
L f=\left(1-x^{2}\right) f^{\prime \prime}+(\beta-\alpha-(\alpha+\beta+2) x) f^{\prime}
$$

$$
L F=\lambda F
$$

\longrightarrow Soling of these diffiys ave uniquely characturised by their orthogonality properties.
Man I ODES produce bolinominl solve that
are orthogonal writ. multiple inner products
Example

$$
\langle f, g\rangle=\int_{I_{j}} f g w(x) d x
$$

Some collection of disjoint intarvals.
Lamé diffiy:

$$
Q_{\uparrow}^{Q}(x) f^{\prime \prime}+\frac{1}{2} Q^{\prime}(x) f^{\prime}(x)-\frac{1}{4}(v(\nu+1) x+\lambda) F=0
$$

$\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)$
$l_{1}<l_{2}<l_{3}$

If $v=2 n$ there are $n+1$ sol'ns that are poly of degree n.

$$
\begin{aligned}
& \left\langle F_{1}\right\rangle_{1,2}=\int f g W d x \quad F_{1}=\left(l_{1}, l_{2}\right) \\
& I_{\alpha}=\left(e_{2}, e_{3}\right) \\
& w=\pi\left(x-e_{i}\right)^{-1 / 2}
\end{aligned}
$$

other examples: * Free polynomials $(-1,11,(1, \infty)$

$$
I_{1}=(-\infty, 0) \quad I_{2}=(0, \infty)
$$

Occurs in the study of Schrödinger en's with $O\left(r^{6}\right)$ potential.
Question Are such polynomials uniquely determined by such orthogonality propertios. Ans Yes.

Higher axamoloc "Maine- Stieltíls pola""

Higher examples＂Heine－StieltJes polys＂10：37

Joint orthogonality and＂㘶value problems． $k=2$
Inner products $\longrightarrow A_{1, \alpha}$ symmetric matrices simultaneously diagonalize \Leftrightarrow solve relative can：

$$
\left(\lambda_{1} A_{1}+\lambda_{2} A_{2}\right) V=0 \quad\left(\lambda_{1} \lambda_{2}\right) \in \mathbb{A}^{2} / \operatorname{Kn}^{2}
$$

