Severa thoughts on December 12 - the (co)commutative

case

Severa's construction.

Given a Braided Monoidal Category (BMC) \mathcal{D} (with Manin $\left(\partial, \mathfrak{g}, \mathfrak{g}^{\star}\right)$, set $\left.\mathcal{D}:=\mathcal{U}(\partial)-\operatorname{Mod}^{\Phi}\right)$, given a co-braided coalgebra $\left(M, \Delta: M \rightarrow M^{2}, \epsilon: M \rightarrow 1_{\mathcal{D}}\right)(M:=\mathcal{U}(\mathrm{g})=$ $\left.\mathcal{U}(\partial) / \mathcal{U}(\partial) g^{*}\right)$, given a second BMC C (Vet), a functor $F: \mathcal{D} \rightarrow \mathcal{C}(F(X):=X / \mathrm{g} X)$ and a comonoidal structore c (namely a natural $c_{X, Y}: F(X Y) \rightarrow F(X) F(Y)$ and $c_{1}: F\left(1_{\mathcal{D}}\right) \rightarrow 1_{\mathcal{C}}$ respecting the braiding and associativity) such that

$$
\begin{gathered}
F(X M Y) \xrightarrow{F(\mid \Delta I)} F(X M M Y) \xrightarrow{c_{X M, M r}} F(X M) F(M Y) \\
\text { and } \quad F(M) \xrightarrow{F(\epsilon)} F\left(1_{\mathcal{D}}\right) \xrightarrow{c_{1}} 1_{C}
\end{gathered}
$$

are isomorphisms (the clear $c_{X, Y}: X Y / \mathrm{g}(X Y) \rightarrow$ • How does this restrict to AT/AET in the co-commutative $(X / \mathrm{g} X)(Y / \mathrm{g} Y))$, construct a Hopf algebra structure on case?
$H:=F\left(M^{2}\right):$
$\Delta_{H}: F\left(M^{2}\right) \xrightarrow{F(M)} F\left(M^{4}\right) \xrightarrow{F(\mid R 1)} F\left(M^{4}\right) \xrightarrow{c_{M, M}} F\left(M^{2}\right)^{2}$, $m_{H}: \quad F\left(M^{2}\right)^{2} \stackrel{c_{M^{2} M^{2}} \circ F(|A|)}{\sim} F\left(M^{3}\right) \xrightarrow{F(|\epsilon|)} F\left(M^{2}\right)$,
$S_{H}: \quad F\left(M^{2}\right) \xrightarrow{F(R)} F\left(M^{2}\right)$.
Set also $G: X \mapsto F(M X)\left(G: X \mapsto \frac{U(9) X}{g(\mathcal{U}(9) X}\right)$.
Questions. - Is H the symmetry algebra of something?

- In the non-quasi case, can we reconstruct $\mathcal{U}(\mathrm{g})$ from the category of ∂-modules?
- In the abstract context, what is the relation between H and M ?

$$
\begin{array}{ll}
\text { Now } M=u\left(y^{*}\right)=u(\partial) / u(\partial) g & F(X):=X / y^{*} X \\
G(X):=F(M X) & F\left(\left.\right|_{M} ^{M} G(X) G\binom{V}{1} \quad b y\right.
\end{array}
$$

To get J, take $X=V=U(\partial)$.

1. How is it an element of $U(\partial)^{\otimes 2}$?
2. How is it an element of TAnta 2

