Enrique: \(y, y^* \in \mathbb{E} \quad D \mapsto \text{U}(\mathbb{E}) - \text{mod}, \quad D^2 \mapsto \text{U}(\mathbb{E}) - \text{mod} \)

\[M = \text{U}(\mathbb{E})/\text{U}(\mathbb{E})y^* \]

co-commutative &

co-associative in both \(D \) & \(D^2 \)

\(F : D \rightarrow \text{vect} \quad F(x) = Xy = XyX \)

\(F(xy) \mapsto F(x) \circ F(y) \) “obvious”

\(F \) takes \(M \) to \(F(M) \), which is also co-commutative and co-associative.

\[F(xy)F(z) \]

\[F(xy)z \]

\[F(x(y)z) \]

\[F(x)F(y)F(z) \]

\[F(x)(F(y))F(z) \]

\[F(xy) - F(x)F(y) \]

\[F(x)F(y) \]

\[F(x)F(y)F(z) \]

\[F(x)F(y)F(z) \]

\(M \otimes M \) is a \(\alpha \)-coalgebra, non-co-commutative by

\[\alpha_h (y) = F(M \otimes M) \]

\[F(M^2) \circ F(M^2) \leftrightarrow F(M^2 M^2) \]

\[F(M^3) \]

\[F(M^3) \]

Associtivity follows from a big diagram