I'm still missing a name for that

December-19-13

$$
e^{s a d u(\gamma)}=C_{u}^{\beta(s)}
$$

continued as "2OM-0 /The Growth map".
Find $\beta(s)$
$\frac{d}{d s}$:

$$
\begin{aligned}
& \operatorname{ad} d_{u} \gamma / / e^{\operatorname{sadu}(\gamma)}=\operatorname{adu}\left(\beta^{\prime} / / \frac{e^{a d \beta(s)}-1}{a d \beta^{\prime}()} \| R C_{u}^{-\beta(s)}\right) \|\left(C_{u}^{\beta(s)}\right. \\
& \beta^{\prime} / / \frac{l^{a d \beta(s)}-1}{a d \beta(s)} \| R C_{u}^{-\beta(s)}=\gamma \\
& \beta^{\prime}=\gamma / / C_{u}^{\beta(s)} / / \frac{a d \beta(s)}{l^{a d \beta(s)}-1} \\
& =\gamma / / l^{\operatorname{sad}_{4} \gamma} / / \frac{a d \beta(s)}{l^{a d \beta^{(s)}}-1} \quad \Rightarrow \text { diffiQ } \\
& C_{u}^{s \beta}=e^{a d u \gamma(s)} \quad \text { Find } \gamma(s)
\end{aligned}
$$

$\frac{d}{d s}$:

$$
\left.\begin{array}{rl}
\operatorname{ad} d_{u} & \left(\beta / / R C_{u}^{-s \beta}\right) \| C_{u}^{s \beta}= \\
& \left(\left(a d_{u} \gamma^{\prime}\right) / l \frac{l^{a d a d_{u} \gamma}-1}{a_{d} a_{d} \gamma}\right) l^{a d_{u} \gamma}
\end{array}\right\} \begin{aligned}
& \text { I don't want } \\
& \text { to be harl, } \\
& \text { at lust not } \\
& \text { yet. }
\end{aligned}
$$

2013-12 Page 2

