December-04-13 2:40 AM

Cheat Sheet Severa Quantization

http://drorbn.net/AcademicPensieve/2013-12/ initiated 3/12/13; modified 4/12/13

Severa's construction.

Given a Braided Monoidal Category (BMC) \mathcal{D} (with Manin Given a Braided Monoidal Category (BMC) D (with Mahm (∂, g, g^*) , set $D := \mathcal{U}(\partial) - \text{Mod}^{\Phi}$), given a co-braided coalgebra $(M, \Delta : M \to M \otimes M) \in M \to 1_{\mathcal{D}}$ ($M := \mathcal{U}(g) = \mathcal{U}(\partial)/\mathcal{U}(\partial)g^*$), given a second BMC C (Vect), a functor $F: \mathcal{D} \to C$ (F(X) := X/gX) and a comonoidal structure C (namely a natural $C_{X,Y}: F(XY) \to F(X)F(Y)$ respecting the braiding and associativity) such that the braiding and associativity) such that

$$F(XMY) \xrightarrow{F(1\Delta 1)} F(XMMY) \xrightarrow{c} F(XM)F(MY)$$
and $F(M) \xrightarrow{F(\epsilon)} F(1_{\mathcal{D}}) \xrightarrow{c} 1_{C}$

are isomorphisms (the obvious $c_{X,Y}$: XY/g(XY)

(X/gX)(Y/gY)), construct a Hopf algebra structure on H := $F(M^2)$:

$$\Delta_{H} \colon F(M^{2}) \xrightarrow{F(\Delta\Delta)} F(M^{4}) \xrightarrow{F(1R1)} F(M^{4}) \xrightarrow{c_{M,M}} F(M^{2})^{2}$$

$$m_{H} \colon F(M^{2})^{2} \xrightarrow{c_{M,M} \circ F(1\Delta 1)} F(M^{3}) \xrightarrow{F(1\epsilon 1)} F(M^{2}),$$

$$S_{H} \colon F(M^{2}) \xrightarrow{F(R)} F(M^{2}).$$

Questions. • Is H the symmetry algebra of something?

- ullet In the non-quasi case, can we reconstruct $\mathcal{U}(\mathfrak{g})$ from the category of ∂ -modules?
- In the abstract context, what is the relation between H and

Tannakian reconstruction.

7

— Given an algebra A let $\mathcal{D} := A - \text{Mod}$ (projective (?) left A-modules), let $C := \text{Vect and } G : \mathcal{D} \to C \text{ be the forGetful}$ functor. Then $A \simeq \operatorname{End}(G)$ by

$$a \in A \mapsto \text{(the action of } a \text{ on any } X \in \mathcal{D}\text{)},$$

 $\{h_X \colon G(X) \to G(X)\}_{X \in \mathcal{D}} \mapsto h_A(1) \in A.$

— Given a monoidal \mathcal{D} and an exact $G: \mathcal{D} \to C =: Vect$ with a natural isomorphism $\alpha_{X,Y} : G(X)G(Y) \to G(XY)$, there is a Hopf algebra structure on H := End(G): product is composition, coproduct $\Delta: H \to H \otimes H = \operatorname{End}(G^2: \mathcal{D} \times H)$ $\mathcal{D} \to C$) by

$$(h_X)_{X\in\mathcal{D}}\mapsto \left((X,Y)\mapsto \alpha_{X,Y}/\!\!/h_{XY}/\!\!/\alpha_{X,Y}^{-1}\in \operatorname{End}(G(X)G(Y))\right).$$