Claim If $G \subset H$ and $G C H^{a b}$ is trivial,
then

$$
\operatorname{gr}(G \notin H) \frac{\sim}{v \cdot s} \operatorname{gr} G \otimes g r H
$$

PE Given Z_{G}, Z_{H}, set

$$
\begin{aligned}
& z(g, h)=Z_{G}(g) \otimes Z_{H}(h) \\
& \begin{array}{c}
(h-1)(g-1)=h g-g-h+1= \\
=g h^{9}-g-h+1 \\
=(g-1)\left(h^{9}-1\right)+\left(h^{9}-h\right)
\end{array} \\
& \text { 5: }=9-1 \\
& \overline{g-1}=g^{-1}-1=g^{-1}(1-g) \\
& =-9^{-1} \frac{g}{g} \\
& = \\
& \left(g^{-1} h g-h\right)=\left(1-g^{-1} \bar{g}\right)(1+h)(1+\bar{g})-(1+\bar{h}) \\
& =\bar{g}-g^{-1} \bar{g}+\Gamma \bar{g}-g^{-1} \bar{g} \bar{g}-g^{-1} \bar{g} \bar{h}-g^{-1} \bar{g} \bar{\Gamma} \\
& =\left(1-9^{-1}\right) \bar{g}+\ldots \\
& =g^{-1} \frac{g}{g}-g^{-1} \bar{g} \bar{g} \bar{h} \bar{g}-g^{-1} \bar{g} \bar{L}-g^{-1}-[\bar{g} \\
& g^{-1} h^{-1} g h^{-1}=\left(1-g^{-1} \bar{g}\right)\left(1-h^{-1} \bar{h}\right)(1+\bar{g})(1+\bar{h}) \\
& =-g^{-1} \cdot \frac{g}{g}-b_{h}+\bar{h}+\bar{g}+\bar{h}+g^{-1} \bar{g} h^{-1} \bar{h}-g^{-1} \bar{g} \bar{g}-g^{-1} \bar{g} \bar{h} \\
& -h^{-1} \bar{h} \bar{g}-h^{-1} \bar{h}+\bar{\jmath} \bar{h}
\end{aligned}
$$

$$
\begin{aligned}
& -h^{\prime} h g-h^{-1} h h+\bar{g} h \\
= & g^{-1} \bar{g} \bar{g}+h^{-1} h+g^{-1} \bar{g} h^{-1} \bar{h}-g^{-1} \bar{g} \bar{g}-g^{-1} \bar{g} \bar{h} \\
- & h^{-1} \bar{h} \bar{g}-h^{-1} \bar{H}+\bar{g} \overline{4} \\
= &
\end{aligned}
$$

$$
\left(h^{9}-h\right)=h\left(\pi\left[a_{i}, b_{i}\right]-1\right)=
$$

