Homological Perturbation Lemma

November-26-13 3:24 AM

From http://ncatlab.org/nlab/show/homological+perturbation+theory:

Homological perturbation lemma

Let (X,d),(Y,d) be chain complexes over a ring R and let $f:X \to Y$, $\nabla:Y \to X$ be chain maps, and $\Phi:X \to X$ a <u>chain homotopy</u> such that

homotopy such that
$$f\nabla = 1, \quad \nabla f = 1 + d\Phi + \phi d,$$

$$f\Phi = 0, \Phi \nabla = 0, \Phi^2 = 0, \Phi d\Phi = -\Phi.$$
That (rainic calls "special deformation retract")

Let X, Y have filtrations F^* bounded below by 0 and preserved by ∇, f, Φ and the differentials on X, Y. Suppose X has another differential d^r with the property that

$$(d^{\tau}-d)F^{p}X\subseteq F^{p-1}X$$

for all $p \ge 0$. The **Homological Perturbation Lemma** states that Y can be given a new differential d^{τ} such that there is a chain equivalence $(Y, d^{\tau}) \to (X, d^{\tau})$.

