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The Kashiwara-Vergne Problem and Topology
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Abstract. I will describe a general machine, a close cousin
of Taylor’s theorem, whose inputs are topics in topology and
whose outputs are problems in algebra. There are many in-
puts the machine can take, and many outputs it produces,
but I will concentrate on just one input/output pair. When
fed with a certain class of knotted 2-dimensional objects in
4-dimensional space, it outputs the Kashiwara-Vergne Prob-
lem (1978 w/KV, solved Alekseev-Meinrenken 2006 w/AM,
elucidated Alekseev-Torossian 2008-2012 w/AT), a problem
about convolutions on Lie groups and Lie algebras.

The Kashiwara-Vergne Conjecture. There exist
two series F' and G in the completed free Lie

algebra in generators x and y so that Kashiwara
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Definition. A linear Z: K — A is an “expansion” if for any w/inf
yeI™ Z(y) = (0,...,0,7/Z™F ! x,...), and a “homomor-

phic expansion” if in addition it preserves the product.

Example Let K = C>(R") and Z = {f: f(0) = 0}. Then
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An expansion Z is a choice of a
“progressive scan” algorithm.

Theorem (with Zsuzsanna Dancso, w/WKO).
Finding a homomorphic expansion for wk is
equivalent to solving the Kashiwara-Vergne prob-
lem. There is a bijection between the set of ho- |
momorphic expansions for wk and the set of so-
lutions of the Kashiwara-Vergne problem.
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Proof of Relation M:
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44  “God created the knots, all else i in
. topology is the work of mortals.”
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Auxiliary operations:
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