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Finite Type Invariants of Ribbon Knotted Balloons and Hoops
Abstract. On my September 17 Geneva talk (w/sep) I I de-Action 1. t:" K
scribed a certain trees-and-wheels-valued invariant ¢ of rib- |
bon knotted loops and 2-spheres in 4-space, and my October 8 H_,‘ +‘_‘::‘

Geneva talk (w/oct) describes its reduction to the Alexander joh — @

polynomial. Today I will explain how that same invariant it

arises completely naturally within the theory of finite type Vomsiie) e '—)”" +’_t::‘
invariants of ribbon knotted loops and 2-spheres in 4-space. T H
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My goal is to tell you why such an invariant is expected, yet

not to derive the computable formulas. W }—H }__ﬁ uF:‘ ‘—H #4
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satisfying “property U™ if 4 € Z", then : :

i YINg  Propery 7 Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels
XS Lin persist.

X

Z(v) = (0,...,0,4/T" %, %,...).

Why? e Just because, and this is vastly more general. Theorem. A" is a bi-algebra. The space of its primitives is
o (K /Zm+1)" is “finite-type/polynomial invariants”. FL(T)" x CW(T), and ¢ = log Z.
e The Taylor example: Take K = C*(R"), I =(is computable! ¢ of the Borromean tangle, to degree 5H:

{f € K: f(0)=0}. Then Z" = {f: f vanishes like |z|"} so
7" /T is homogeneous polynomials of degree n and Z is H.Y E E E

“Taylor expansion™ (So Taylor expansions are vastly more q%.
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“God created the knots, all else in o = "“°'3°"°"°
topology is the work of mortals.” = = e o

Leopold Kronecker (modified) www.katlas.org Thekrei- hlu

Plan. We'll construct a graded A a sur- Abh

jective graded 7: AV Abh an(l a fil- 5 ) 2 .%-
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