Université de Genève

Section de mathématiques

A. Alekseev and P. Severa

Braids and Associators, problem set 6 - by Dror Bar-Natan

Online: http://drorbn.net/AcademicPensieve/2013-10/MZV_ex6.pdf.

1. With $R=C^{\infty}\left(\mathbb{R}^{n}\right)$ and $I=\{f \in R: f(0)=0\}$, find the set \mathcal{Z} of all expansions $Z: R \rightarrow A:=\operatorname{gr} R=\hat{\bigoplus} I^{m} / I^{m+1}$.

Bonus (hard). Can you find an algebraic condition that characterises the Taylor expansion Z_{T} within \mathcal{Z} ? (You may want to read question 3).
2. Find a homomorphic expansion for $\mathbb{Z} F_{n}$, the group ring (over the integers) of the free group on n generators? (The simplest one is known as "the Magnus expansion".
3. Let G be a group and R be a ring, let $R G=\left\{\sum a_{i} g_{i}: a_{i} \in R\right\}$ be the group ring of G with coefficients in R, and let $\Delta: R G \rightarrow R G \otimes_{R} R G$ be the R-linear extension of the map $\Delta(g)=g \otimes g$. Let $I:=\left\{\sum a_{i} g_{i}: \sum a_{i}=0\right\}$ be the augmentation ideal of $R G$, and let $A:=\operatorname{gr} R G$.
(i) Explain how Δ induces a map $\Delta_{A}: A \rightarrow A \otimes_{R} A$.
(ii) Describe Δ_{A} in the case where $R G=\mathbb{Z} F_{n}$.
(iii) We say that an expansion $Z: R G \rightarrow A$ is co-homomorphic if $(Z \otimes$ $Z) \circ \Delta=\Delta_{A} \circ Z$. Is there a co-homomorphic expansion for $\mathbb{Z} F_{n}$? For $\mathbb{Q} F_{n}$?
3. Recall that $A_{n}:=\operatorname{gr} P B_{n}=\left\langle t^{i j}=t^{j i}: 1 \leq i \neq j \leq n\right\rangle / \mathcal{R}$, where \mathcal{R} consists of the relations $\left[t^{i j}, t^{k l}\right]=0$ when $|\{i, j, k, l\}|=4$ and $\left[t^{j k}, t^{i j}+t^{i k}\right]=$ 0 when $|\{i, j, k\}|=3$. Show that every degree m element of A_{n} can be written as a linear combination of sorted elements; namely, of elements of the form $t^{i_{1} j_{1}} t^{i_{2}, j_{2}} \cdots t^{i_{m} j_{m}}$, where $i_{\alpha}<j_{\alpha}$ for every $1 \leq \alpha \leq m$ and where $j_{1} \leq j_{2} \leq \cdots \leq j_{m}$.
(This should remind you of $P B_{n}=F_{n-1} \rtimes\left(F_{n-2} \rtimes\left(\ldots\left(F_{2} \rtimes F_{1}\right) \ldots\right)\right)$. Does it?)

