Université de Genève Section de mathématiques

A. Alekseev and P. Severa

Braids and Associators, problem set 6 — by Dror Bar-Natan

Online: http://drorbn.net/AcademicPensieve/2013-10/MZV_ex6.pdf.

1. With $R = C^{\infty}(\mathbb{R}^n)$ and $I = \{ f \in R : f(0) = 0 \}$, find the set \mathcal{Z} of all expansions $Z : R \to A := \operatorname{gr} R = \bigoplus I^m / I^{m+1}$.

Bonus (hard). Can you find an algebraic condition that characterises the Taylor expansion Z_T within \mathbb{Z} ? (You may want to read question 3).

- **2.** Find a homomorphic expansion for $\mathbb{Z}F_n$, the group ring (over the integers) of the free group on n generators? (The simplest one is known as "the Magnus expansion".
- **3.** Let G be a group and R be a ring, let $RG = \{\sum a_i g_i : a_i \in R\}$ be the group ring of G with coefficients in R, and let $\Delta \colon RG \to RG \otimes_R RG$ be the R-linear extension of the map $\Delta(g) = g \otimes g$. Let $I := \{\sum a_i g_i : \sum a_i = 0\}$ be the augmentation ideal of RG, and let $A := \operatorname{gr} RG$.
 - (i) Explain how Δ induces a map $\Delta_A : A \to A \otimes_R A$.
 - (ii) Describe Δ_A in the case where $RG = \mathbb{Z}F_n$.
- (iii) We say that an expansion $Z \colon RG \to A$ is co-homomorphic if $(Z \otimes Z) \circ \Delta = \Delta_A \circ Z$. Is there a co-homomorphic expansion for $\mathbb{Z}F_n$? For $\mathbb{Q}F_n$?
- 3. Recall that $A_n := \operatorname{gr} PB_n = \langle t^{ij} = t^{ji} \colon 1 \leq i \neq j \leq n \rangle / \mathcal{R}$, where \mathcal{R} consists of the relations $[t^{ij}, t^{kl}] = 0$ when $|\{i, j, k, l\}| = 4$ and $[t^{jk}, t^{ij} + t^{ik}] = 0$ when $|\{i, j, k\}| = 3$. Show that every degree m element of A_n can be written as a linear combination of sorted elements; namely, of elements of the form $t^{i_1j_1}t^{i_2,j_2}\cdots t^{i_mj_m}$, where $i_{\alpha} < j_{\alpha}$ for every $1 \leq \alpha \leq m$ and where $j_1 \leq j_2 \leq \cdots \leq j_m$.

(This should remind you of $PB_n = F_{n-1} \rtimes (F_{n-2} \rtimes (\dots (F_2 \rtimes F_1) \dots))$. Does it?)