Cheat Sheet Double Tree

Joint with Zsuzsanna Dancso.

Let \mathcal{K}^{uw} be the algebraic structure $[sKTG \xrightarrow{a} \widetilde{wTF}]$, where	ori switch
sKTG is signed knotted trivalent $(1, 1)$ -tangles. \widetilde{wTF} is wTF^o	jectivizatio
with added generators $\left\{ \begin{array}{c} \swarrow, \\ \swarrow, \\ \end{array}, \\ \begin{array}{c} \swarrow, \\ \end{array}, \\ \begin{array}{c} \swarrow, \\ \end{array} \right\}$ now a	1-wheels a
coloured circuit algebra. All Reidemeister and OC relations	Theorem
appear with all possible colourings. Two? new operations:	for \mathcal{K}^{uw} . (

ori switch of red strands and puncture of black. The projectivization of \mathcal{K}^{uw} is $\mathcal{A}^{uw} = [\mathcal{A}^u \xrightarrow{\alpha} \mathcal{A}^{sw}]$, where in \mathcal{A}^{sw} 1-wheels are zero and so are tails on red strands.

Theorem 0. \exists homomorphic expansion $Z^{uw} = (Z^u, Z^w)$ for \mathcal{K}^{uw} . (In particular $\alpha Z^u = Z^w a$.)

Dror's notes: Still none.