
PROOF OF A CONJECTURE OF KULAKOVA ET AL. RELATED TO
THE sl2 WEIGHT SYSTEM

DROR BAR-NATAN AND HUAN T. VO

Abstract. In this article, we show that a conjecture raised in [KLMR], which regards the
coefficient of the highest term when we evaluate the sl2 weight system on the projection of
a diagram to primitive elements, is equivalent to the Melvin-Morton-Rozansky conjecture,
proven in [BG].

1. Introduction

In this section, we briefly recall a conjecture of [KLMR] together with the relevant termi-
nologies. A more complete treatment can be found in [KLMR]. Given a chord diagram D
with m chords, its labelled intersection graph Γ(D) is the simple graph whose vertices are
the chords of D, numbered from 1 to m, and two vertices are connected by an edge if the
two corresponding chords intersect.

Following [KLMR], by orienting the chords of D arbitrarily, we can turn Γ(D) into an
oriented graph as follows. Given two intersecting oriented chords a and b, the edge connecting
a and b goes from a to b if the beginning of the chord b belongs to the arc of the outer circle
of D which starts at the tail of a and goes in the positive (counter-clockwise) direction to
the head of a (see Figure 1). We also have another description of the orientation. Given two
intersecting oriented chords a and b, we look at the smaller arc of the outer circle of D that
contains the tails of a and b. Then we orient the edge connecting a and b from a to b if we
go from the tail of a to the tail of b along the smaller arc in the counter-clockwise direction.
The reader should check that the two definitions of orientation are equivalent.

a

b

a b

Figure 1. Orienting Γ(D)

Consider a circuit of even length l = 2k in the oriented graph Γ(D). By a circuit we
mean a closed path in Γ(D) with no repeated edges and vertices except for the first and last
vertices. Choose an arbitrary orientation of the circuit. For each edge, we assign a weight +1
if the orientation of the edge coincides with the orientation of the circuit and −1 otherwise.
The sign of a circuit is the product of the weights over all the edges in the circuit. We say
that a circuit is positively oriented if its sign is positive and negatively oriented if its sign is
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negative. We define

Rk(D) : =
∑
s

sign(s),

where the sum is over all (un-oriented) circuits s in Γ(D) of length 2k.

It is well-known that given a Lie algebra g equipped with an ad-invariant non-degenerate
bilinear form, we can construct a weight system wg with values in the center ZU((g)) of the
universal enveloping algebra U(g) (see, for instance [CDM, Section 6]). In the case of the
Lie algebra sl2, we obtain a weight system with values in the ring C[c] of polynomials in a
single variable c, where c is the Casimir element of the Lie algebra sl2. Note that the Casimir
element c also depends on the choice of a bilinear form. For the case of sl2, an ad-invariant
non-degenerate bilinear form is given by

〈x, y〉 = Tr(ρ(x)ρ(y)), x, y ∈ sl2,

where ρ : sl2 → gl2 is the standard representation of sl2. Since sl2 is simple, any invariant
form is of the form λ〈·, ·〉 for some constant λ. If we let cλ be the corresponding Casimir
element and c = c1, then cλ = c/λ. If D is a chord diagram with n chords, it is known that

wsl2(D) = cn + an−1c
n−1 + · · ·+ a1c

and the weight system corresponding to λ〈·, ·〉 is

wsl2,λ(D) = cnλ + an−1,λc
n−1
λ + · · ·+ a1,λcλ.

Therefore the relationship between these two weight systems is given by

wsl2,λ(D) =
1

λn
wsl2(D)|c=λcλ .

Now we define a map which sends a chord diagram into the set of primitive elements in
the space of chord diagrams. Let D be a chord diagram with n chords, V = V (D) its set
of chords. Then the map πn from the space of chord diagrams to its primitive elements is
given by

πn(D) = D − 1!
∑

V=V1tV2

D|V1 · D|V2 + 2!
∑

V=V1tV2tV3

D|V1 · D|V2 · D|V3 − · · · ,

where sums are taken over all unordered disjoint partitions of V into non-empty subsets and
D|Vi denotes D with only chords from Vi and multiplication is the usual multiplication in
the space of chord diagrams. If we change unordered partitions to ordered ones, we obtain

(1) πn(D) = D − 1

2

∑
V=V1tV2

D|V1 · D|V2 +
1

3

∑
V=V1tV2tV3

D|V1 · D|V2 · D|V3 − · · · .

It is shown (see [L]) that πn(D) is indeed a primitive element. We are ready to state the
conjecture raised in [KLMR].

Conjecture 1. Let D be a chord diagrams with 2m chords, and wsl2,2 be the weight system
associated with sl2 and 2〈·, ·〉. Then

wsl2,2(π2m(D)) = 2Rm(D)cm2 + · · · .
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2. Proof of the conjecture

The conjecture is a consequence of the Melvin-Morton-Rozansky (MMR) conjecture. We
recall the statement of the MMR conjecture below. Let Jk(q) be the “framing independent”
colored Jones polynomial associated with the k-dimensional irreducible representation of sl2.
Set q = eh, write Jk(q) as power series in h:

Jk =
∞∑
n=0

Jknh
n.

It is known that Jkn is given by (see [O, Theorem 6.14] and [CDM, Section 11.2.3])

Jkn = Tr
(
w′sl2
∣∣
c= k2−1

2
·Ik

)
.

Here Ik is the k × k identity matrix and w′sl2 is the “deframing” of the weight system wsl2

(see [CDM, Section 4.5.4]). For any chord diagram D of degree n (modulo the framing
independent relation), the value w′sl2(D) is a polynomial in c of degree at most bn/2c (see

[CDM, Exercise 6.25]). It follows that Jkn is a polynomial in k of degree at most n + 1.
Dividing Jkn by k we then obtain

Jk

k
=
∞∑
n=0

( ∑
0≤j≤n

bn,jk
j

)
hn,

where bn,j are Vassiliev invariants of order ≤ n. We denote the highest order part of the
colored Jones polynomial by

JJ : =
∞∑
n=0

bn,nh
n.

Next we recall the definition of the Alexander-Conway polynomial. The Conway polyno-
mial C(t) can be defined by the skein relation:

(i) C(unknot) = 1,
(ii) C(L+) − C(L−) = tC(L0), where L+, L− and L0 are identical outside the regions

consisting of a positive crossing, a negative crossing and no crossing, respectively.

The Alexander-Conway polynomial is a Vassiliev power series:

C̃(h) : =
h

eh/2 − e−h/2
C|t=eh/2−e−h/2 =

∞∑
n=0

cnh
n.

Now we are ready to state the MMR conjecture, which was proven in [BG].

Theorem. With the notations as above, we have

(2) JJ(h)(K) · C̃(h)(K) = 1

for any knot K.

The proof of the MMR conjecture found in [BG] consists of reducing the equality of
Vassiliev power series to an equality of weight systems. Recall that a Vassiliev invariant ν
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of order n gives us a weight system Wn(ν) of order n by Wn(ν)(D) = ν(KD), where D is a
chord diagram of degree n and KD is a singular knot whose chord diagram is D. Let

WJJ : =
∞∑
n=0

Wn(bn,n) and WC : =
∞∑
n=0

Wn(cn).

Then it is shown in [BG] that the equality (2) is equivalent to

WJJ ·WC = 1.

Here 1 denotes the weight system that takes value 1 on the empty chord diagram and 0
otherwise. Recall also that the product of two weight systems is given by

W1 ·W2(D) = m(W1 ⊗W2)(∆(D)),

where m denotes the usual multiplication in C and ∆ denotes co-multiplication in the space
of chord diagrams. When D is primitive, we have

0 = WJJ ·WC(D) = m(WJJ ⊗WC)(D ⊗ 1 + 1⊗D) = WJJ(D) +WC(D).

Thus we obtain

Lemma 1. If D is a chord diagram of degree 2m, then

WJJ(π2m(D)) = −WC(π2m(D)).

To prove conjecture 1, we need the notion of logarithm of a weight system (see [LZ,
Chapter 6]). Let w be a weight system and suppose w can be written as w = 1+w0, where
w0 vanishes on chord diagrams of degree 0. Then

logw : = log(1 + w0) = w0 −
1

2
w2

0 +
1

3
w3

0 − · · ·

is well-defined since for each chord diagram we only have finitely many non-zero summands.

Lemma 2. Let w be a multiplicative weight system, i.e. w(D1 · D2) = w(D1)w(D2), and
w(empty chord diagram) = 1. If D is a chord diagram of degree 2m, then

(logw)(D) = w(π2m(D)).

Proof. From the definition of the logarithm of a weight system we have

logw = log(1 + (w − 1))

= (w − 1)− 1

2
(w − 1)2 +

1

3
(w − 1)3 − · · ·

Now if D is a chord diagram, then (w−1)(empty chord diagram) = 0 and (w−1)(D) = w(D)
if D has degree > 0. Therefore,

(w − 1)k(D) =
∑

V1tV2t···tVk=V (D)

w(D|V1)w(D|V2) · · ·w(D|Vk)

=
∑

V1tV2t···tVk=V (D)

w(D|V1 · D|V2 · · · D|Vk),

where the sum is over ordered disjoint partition of V (D) into non-empty subsets and the
last equality follows from the multiplicativity of w. Comparing with equation (1) we obtain
our desired equality. �
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It is known that the weight system WC is multiplicative. Therefore for a chord diagram
D of degree 2m,

(logWC)(D) = WC(π2m(D)).

Given an oriented circuit H in a labelled intersection graph, we define the descent d(H) of
the circuit to be the number of label-decreases of the vertices when we go along the circuit
in the specified orientation. We have the following lemma.

Lemma 3. Given a chord diagram D of degree 2m, we have

2Rm(D) =
∑
H

(−1)d(H) = −(logWC)(D),

where the sum is over all oriented circuits H of length 2m.

Proof. The second equality is proven in [BG, Proposition 3.13]. To prove the first equality,
we show that by labeling the chords of D appropriately, the intersection graph Γ(D) of D
has the property that the edges always go in the direction of increasing indices. To get a
required labeling, we cut the outer circle of D to obtain a long chord diagram and then we
label the chords as we encounter them when we go from left to right in an increasing fashion.
Then it’s clear that a descent will correspond to an edge with weight −1. Every circuit H
will have two possible orientations H+ and H−. However, since the circuit has even length,
d(H+) and d(H−) have the same parity and the first equality follows. �

Proof of Conjecture 1. Let D be a chord diagram of degree 2m, we have a chain of equalities
from the above lemmas

2Rm(D) =
∑
H

(−1)d(H) = −(logWC)(D) = −WC(π2m(D)) = WJJ(π2m(D)).

Therefore,
Jk2m(π2m(D)

k
= 2Rm(D)k2m + · · · .

Plug in c = (k2 − 1)/2 or k2 = 2c+ 1 we obtain

wsl2(π2m(D)) = 2m+1Rm(D)cm + · · · .
Now we just need to do a change of variable

wsl2,2(π2m(D)) =
1

22m
wsl2(π2m(D))|c=2c2

= 2Rm(D)cm2 + · · ·

and the proof is complete. �

Remark. Technically we need to consider w′sl2 instead of wsl2 . However for primitive ele-
ments, deframing does not affect the value of the highest terms (see [CDM, Section 4.5.4]).
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